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Abstract. The spatial variation of b-values in seismically active regions
provides critical insight into the stress state and rupture potential of fault
systems. This study focuses on the Java region and surrounding subduction
zones, where detailed mapping of b-values remains uncertain despite high
seismic risk. A Voronoi-based ensemble modelling framework is
implemented, incorporating the Ogata-Katsura 1993 (OK1993) formulation
and spatial sampling via Sobol sequences to ensure uniform partitioning.
Earthquake data from 1995 onward were compiled and harmonized into
moment magnitude (Mw) using conversion equations from the Indonesian
Earthquake Source and Hazard Map 2017. The OK1993 model enables
estimation of b-values optimized via trust-constr and initialized with
maximum likelihood estimates. The results reveal that high b-values (b >
1.2) dominate offshore southwest Lampung and south of Bali, whereas low
b-values (b < 0.8) appear parts of the Sumatra fault near the Sunda Strait,
faults across Java, and thrusts north of Bali and Lombok. Moderate b-values
(0.8–1.0) extend along the southern Java trench and may represent partially
coupled megathrust segments. Interestingly, the low b-value zones may
indicate locked asperities and potential seismic gap segments, especially
along southern Java, where large ruptures have not occurred in recent
decades. This study demonstrates the utility of spatially adaptive, data-
driven approaches in capturing complex tectonic segmentation and
supports their integration into future seismic hazard assessments in
Indonesia, particularly in Java and its surrounding regions.

Abstrak. Variasi spasial nilai-b di wilayah yang aktif secara seismik
memberikan wawasan penting tentang kondisi tegangan dan potensi
pecahnya sistem sesar. Studi ini berfokus pada wilayah Jawa dan zona
subduksi di sekitarnya, di mana pemetaan detail nilai-b masih belum pasti
meskipun risiko seismiknya tinggi. Kerangka kerja pemodelan ensemble
berbasis Voronoi diimplementasikan, menggabungkan formulasi Ogata-
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Katsura 1993 (OK1993) dan pengambilan sampel spasial melalui sekuens
Sobol untuk memastikan partisi yang seragam. Data gempa bumi sejak
tahun 1995 dan seterusnya dikompilasi dan diharmonisasikan menjadi
magnitudo momen (Mw) menggunakan persamaan konversi dari Peta
Sumber dan Bahaya Gempa Bumi Indonesia 2017. Model OK1993
memungkinkan estimasi nilai-b yang dioptimalkan melalui trust-constr dan
diinisialisasi dengan estimasi kemungkinan maksimum. Hasilnya
mengungkapkan bahwa nilai-b yang tinggi (b > 1,2) mendominasi lepas
pantai barat daya Lampung dan selatan Bali, sementara nilai-b yang rendah
(b < 0,8) muncul di bagian patahan Sumatra dekat Selat Sunda, patahan di
Jawa, dan dorongan di utara Bali dan Lombok. Nilai-b sedang (0,8–1,0)
memanjang di sepanjang palung selatan Jawa dan dapat mewakili segmen
megathrust yang terhubung sebagian. Menariknya, zona nilai-b yang
rendah dapat menunjukkan asperitas yang terkunci dan segmen celah
seismik potensial, terutama di sepanjang Jawa selatan, di mana pecah besar
belum terjadi dalam beberapa dekade terakhir. Studi ini menunjukkan
kegunaan pendekatan yang adaptif secara spasial dan berbasis data dalam
menangkap segmentasi tektonik yang kompleks dan mendukung
integrasinya ke dalam penilaian bahaya seismik di masa depan di Indonesia,
khususnya di Jawa dan wilayah sekitarnya.

1. INTRODUCTION
Indonesia is located in one of the most

tectonically active regions on Earth, situated at
the convergent boundary where the Indo
Australian Plate subducts beneath the Eurasian
Plate along the Sunda megathrust. This
geodynamic setting produces frequent seismic
activity across Java and its surrounding regions,
including the Sunda Trench (Simons et al., 2007;
McCaffrey, 2009). Understanding the spatial
and temporal distribution of earthquakes is
crucial for seismic hazard assessment,
particularly in densely populated and
economically vital regions such as Java. One of
the key parameters used to characterize
seismicity is the b-value of the Gutenberg–
Richter frequency–magnitude distribution.
This parameter reflects the relative proportion
of small to large earthquakes and is widely
interpreted as an indicator of stress conditions,
tectonic segmentation, and material
heterogeneity in the Earth’s crust (Scholz, 2015;
Wiemer & Wyss, 2002; Schorlemmer et al.,
2005).

Despite its wide application, accurate
estimation of b-values remains challenging due
to methodological limitations. Traditional

approaches often rely on subjective choices of
fixed search radii or minimum event counts,
leading to inconsistencies and potential bias in
the resulting b-value maps. These limitations
are particularly problematic in regions with
heterogeneous seismic networks or non
uniform data density. Consequently, classical b-
value estimates may either underestimate or
overemphasize spatial variations, thereby
affecting the reliability of seismic hazard
models (Wiemer & Wyss, 2002; Tormann et al.,
2014; Kamer & Hiemer, 2015).

To address these issues, recent studies have
adopted data-driven approaches that reduce
subjectivity and improve robustness. One such
approach is based on spatial partitioning using
Voronoi tessellation, which allows for adaptive,
non-uniform subdivision of the study area
based on randomly distributed nodes (Jiang et
al., 2021). Within each Voronoi cell, b-values
are estimated using the OK1993 model, a
probabilistic formulation introduced by Ogata
and Katsura (1993) that accounts for magnitude
detection completeness and enables maximum
likelihood estimation of the Gutenberg–Richter
parameters. The model complexity is evaluated
using the Bayesian Information Criterion (BIC),
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and an ensemble of the best-performing models
is selected to produce a median b-value and its
associated uncertainty, expressed through the
Median Absolute Deviation (MAD). This
ensemble-based Voronoi–OK1993 approach
has been successfully applied in studies of
spatial heterogeneity in seismicity (e.g. Jiang et
al., 2021), demonstrating improved resolution
and reduction of sampling bias compared to
traditional methods.

This study applies the Voronoi-based
OK1993 optimization method to analyze the
spatial distribution of b-values in Java and
adjacent areas. Earthquake catalogs were
compiled and harmonized to Moment
Magnitude (Mw) before analysis. The results
provide a comprehensive view of seismic
frequency–magnitude behaviour in the region,
revealing zones of relatively high and low b-
values that may be linked to tectonic
segmentation, fault locking, or variations in
stress regime. The findings are expected to
contribute to a more objective and data-
informed foundation for regional seismic
hazard assessments in Indonesia.

2. LITERATURE REVIEW
The Gutenberg–Richter (G–R) law has long

been used to describe the statistical relationship
between the frequency and magnitude of
earthquakes. The b-value in this relation
quantifies the relative occurrence of small
versus large earthquakes and is widely
interpreted as a proxy for crustal stress
conditions, fault maturity, and heterogeneity in
seismogenic zones (Scholz, 2015; Wiemer &
Wyss, 2002). Numerous studies have shown
that regions with low b-values may be
associated with high stress accumulation or
locked fault patches, whereas high b-values may
reflect increased material heterogeneity or
distributed fault damage, particularly in high-
damage zones near fluid injection, whereas
elevated pore pressure generally leads to lower
b-values due to accelerated fault activation and
smoother stress fields (Thapa et al., 2025;
Schorlemmer & Wiemer, 2005).

However, the reliability of spatial b-value
mapping is often limited by subjective
methodological choices. Traditional methods
generally involve dividing the study region into
regular grids and estimating b-values within
circular windows of fixed radius or fixed event
count (Wiemer & Wyss, 2002). While widely
used, these approaches have been criticized for
their parameter sensitivity and data redundancy
due to overlapping sampling volumes (Kamer &
Hiemer, 2013). Such methods may exaggerate
spatial fluctuations in b-values, especially when
data density varies significantly across the
region (Kagan, 1999).

To overcome these limitations, more recent
studies have adopted data-driven and
nonparametric approaches for estimating b-
values. One of the most prominent is the
Voronoi-based method introduced by Kamer
and Hiemer (2015), which avoids fixed grids
and instead partitions space into Voronoi cells
based on randomly placed nodes. Within each
cell, b-values are estimated using maximum
likelihood techniques, and model complexity is
evaluated using information-theoretic criteria
such as the Bayesian Information Criterion
(BIC). This approach has been demonstrated to
produce more stable and statistically robust b-
value maps, as it reduces the risk of overfitting
and compensates for uneven data coverage.

Complementing this, Jiang et al. (2021)
incorporated the Ogata-Katsura 1993 (OK1993)
model to better account for magnitude
completeness when estimating b-values. The
OK1993 model introduces a magnitude
detection function that allows simultaneous
estimation of the completeness threshold (Mc)
and the b-value, even in regions with limited or
unevenly distributed seismic data. When
combined with Voronoi-based spatial
partitioning and ensemble averaging over
multiple realizations, this method improves the
resolution and reliability of b-value estimation.

These advances underscore a shift toward
more objective and reproducible techniques in
seismological studies, particularly in high-risk
regions such as Indonesia. By building on these
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foundations, the present study aims to apply a
Voronoi-based OK1993 optimization
framework for the first time to earthquake data
in Java and surrounding regions. This literature
basis not only supports the methodological
choices but also highlights the relevance of such
approaches for seismic hazard assessment in
complex tectonic environments.

3. RESEARCH METHODS
This study employs a data-driven

framework to estimate the spatial distribution
of Gutenberg–Richter b-values across Java and
surrounding areas. The methodology integrates
Voronoi tessellation for adaptive spatial
partitioning and the Ogata–Katsura 1993
(OK1993) model for estimation of the
optimized b-value. A key improvement
introduced in this study is the use of Sobol
sequence sampling to generate spatial node
distributions for Voronoi tessellation, replacing
the conventional pseudorandom approach.
This results in a more uniform coverage of
spatial nodes, reducing clustering and under-
sampling in certain areas.

3.1. Earthquake Catalog Preparation
We compiled an earthquake catalog

covering the Java region and adjacent
subduction zones, limited to events from 1995
onward to ensure temporal completeness. The
initial dataset consisted of 62,043 earthquake
records, which were then processed through
magnitude unification and filtering. All
magnitudes were converted to moment
magnitude (Mw) using empirical conversion
equations. These conversions were based on the
empirical relationships provided in Irsyam et al.
(2020), documented in the Indonesian
Earthquake Source and Hazard Map 2017
published by the Pusat Studi Gempa Nasional
(PuSGeN), Ministry of Public Works and
Housing, which serves as the national standard
for seismic hazard research in Indonesia.

The conversion process was restricted to
four common magnitude types: MW (moment
magnitude), MS (surface-wave magnitude), ML

(local magnitude), and MB (body-wave
magnitude). These are the most widely used
magnitude scales in regional and global
earthquake catalogs, each representing different
physical aspects of seismic energy measurement.
Since empirical relationships for converting
other magnitude types to Mw were not available,
events with unsupported or undefined types
were excluded. After this filtering, the catalog
was reduced to 57,072 events with valid Mw
values. Further restriction to events occurring
from 1995 onward, based on completeness
analysis, resulted in a final working dataset of
50,460 earthquakes.

The dataset was cleaned to remove
duplicated events and constrained to entries
with complete time, location, and magnitude
information. Preliminary analyses, including
magnitude–time plots and frequency–
magnitude distributions, were conducted to
assess magnitude consistency, detect
completeness thresholds, and define the
appropriate time window for statistical
modelling.

3.2. Uniform Spatial Partitioning Using
Sobol Sequence

Traditional Voronoi-based studies use
pseudorandom distributions of seed points to
partition the study area into cells. In this study,
we improve the spatial uniformity of
tessellation by generating node coordinates
using a Sobol low-discrepancy sequence, a
quasi-random technique known for better
space-filling properties (Sobol’, 1967). Unlike
standard random sampling, the Sobol sequence
generates points that are more evenly
distributed over the spatial domain, helping to
avoid over-clustering of Voronoi seeds in
certain areas and undersampling in others. This
ensures that each realization of the Voronoi
model explores a more uniform partitioning of
the spatial domain.

Each Voronoi tessellation is created by
placing a number of nodes (ranging from 2 to
40) according to the Sobol distribution. For
each number of nodes, 100 independent
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realizations are performed, resulting in a total of
3900 of spatial models.

3.3. OK1993 Model Formulation
For each Voronoi cell in a given tessellation,

the b-value and completeness function are
estimated using the OK1993 model (Ogata &
Katsura, 1993). This model introduces a
detection probability function 𝑞(𝑀|μ,σ) ,
defined as:

𝑞(𝑀|μ,σ) = 1
√2πσ 2

∫ 𝑒−
(𝑥−μ)2

2σ 2 𝑑𝑥𝑀
−∞  (1)

The probability density of observed magnitudes
is:

P(M|β, μ,σ) =

βe−β (M−μ )+β
2σ2
2 q൫Mหμ,σ൯

∫ βe−β (M−μ )+β
2σ2
2 q൫Mหμ,σ൯dM∞

−∞

      (2)

The log-likelihood function for a series of
magnitudes𝑀𝑖 in a given cell is:

ln L (θ) = n ln β − ∑ [βMi −n
i=1

ln q (Mi|μ,σ)] + nβμ − nβ 2σ2

2
 (3)

Here, β = b ⋅ ln(10) , and the parameter
vector θ = (β, μ,σ)  is estimated using
maximum likelihood optimization. The
optimization process was implemented using
the trust-constr algorithm from the
scipy.optimize.minimize module in Python, a
trust-region method well-suited for constrained
nonlinear optimization problems (Conn et al.,
2000; Virtanen et al., 2020).

Initial parameter values for the OK1993
model were estimated using the standard
maximum likelihood estimator (MLE) by Aki
(1965) for b-value:

bMLE = log 10(e)
M−Mmin

(4)

where M is the mean magnitude and Mmin is the
minimum magnitude in each Voronoi cell. The
initial values of μ and σ were computed directly
from the mean and standard deviation of
magnitudes in each cell. All computations were
conducted in Python with parallel processing
using the multiprocessing library. Data for each
model and tessellation realization were stored

in HDF5 format, which ensures integrity and
performance during parallel read/write
operations.

3.4. Model Selection and Ensemble Analysis
Each spatial model is evaluated based on its

overall model quality using the Bayesian
Information Criterion (BIC):

BIC = − ln L (θ) + k
2

 ln n (5)

where 𝑘 is the number of free parameters and 𝑛
is the number of events. From the entire pool of
tessellation models, the top 100 models with the
lowest BIC values are selected. The ensemble
median and median absolute deviation (MAD)
of the b-values across these best-performing
models are computed at each spatial location to
quantify both central tendency and uncertainty.

In this study, the number of data points 𝑛 in
the BIC formulation was divided by 10. This
empirical adjustment was applied to reduce the
BIC's tendency to over-penalize complex
models with more Voronoi cells, which would
otherwise consistently favor low-resolution
models with fewer cells. However, this
adjustment is problem-specific and may not be
necessary in other case studies where event
density and model resolution are balanced.

3.5. Output Maps and Interpretation
The final products include spatial maps of

median b-values, MAD, and the number of
valid b-values contributing to each cell. These
maps provide insights into the seismic regime
of the region, highlighting zones with
anomalously low b-values, which may indicate
locked asperities or high-stress accumulation
along subduction and crustal fault systems in
and around Java.

Events with magnitudes greater than Mw 6.0
are represented by black circles, with sizes
proportional to their magnitudes. The black
lines with triangular teeth indicate thrust faults
and the trench interface (commonly referred to
as the subduction interface or megathrust
boundary), while plain black lines represent
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normal and strike-slip faults (Irsyam et al.,
2020).

4. RESULTS AND DISCUSSION

4.1. Seismicity Patterns, Magnitude
Consistency, and Adaptive b-value Modeling

The earthquake catalog reveals distinct
spatial patterns of seismicity across Java and its
surrounding tectonic domains. As shown in
Figure 1, seismic events are densely clustered
along the Java Trench, reaffirming the
subduction interface as the principal seismic
source, while inland and back-arc activity
signals the presence of crustal fault systems. The
occurrence of several large-magnitude events
near the trench suggests localized zones of
strain accumulation that may correspond to
locked segments or asperities. Complementing
this, Figure 2 summarizes the catalog’s
magnitude types and source distribution,

highlighting the heterogeneity in recording
practices and the predominance of local
magnitude (ML), which necessitates magnitude
unification for consistent seismicity modelling.

To ensure comparability across events, all
magnitudes were converted to moment
magnitude (Mw), and completeness was
evaluated. Figure 3a demonstrates a stable
lower-magnitude threshold beginning in 1995,
justifying the temporal cutoff used for analysis.
Figure 3b shows that most Mw values were
derived from ML, followed by MS and MB,
consistent with regional reporting standards.
Figure 3c illustrates both cumulative and non-
cumulative FMD, where a clear Gutenberg–
Richter trend is observed at higher magnitudes,
while deviations at the lower end indicate a
completeness threshold (Mc) near Mw 3.2–3.5.
These insights establish the reliability of the
dataset for b-value estimation.

Figure 1.  Earthquake distribution across Java and surrounding regions, extending to the Sunda Trench.
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Figure 2. Distribution of initial earthquake events categorized by magnitude type before the conversion,
along with distributions by the most contributing authors and magnitude ranges.
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Figure 3. (a) Magnitude versus time plot used to assess catalog
completeness using converted moment magnitude (Mw); (b) Pie chart
showing the percentage contribution of each magnitude type used in the
Mw conversion; (c) Cumulative and non-cumulative distributions of
earthquake event counts as a function of converted Mw, using data from
1995 onward.

The spatial modelling of b-values was
carried out using the OK1993 model applied to
Voronoi cells generated from Sobol-distributed
partitions. Figure 4a presents the BIC scores
across thousands of tested models, where the
best-fitting 100 models were selected to
construct a robust ensemble. Figure 4b displays
the fit of the OK1993 model to observed
probability density of data in a representative

cell, demonstrating strong agreement between
empirical and theoretical distributions. Figure
4c illustrates the spatial configuration of the
Voronoi tessellation, which captures the
heterogeneous nature of seismic clustering and
enables localized estimation of b-values. These
model-driven insights reveal the spatial
variation of seismic behaviour across the
region.
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Figure 4. (a) BIC values for all generated models (gray), the top 100 selected
models (blue), and the specific model shown in subfigure (c) (red); (b)
Probability density of earthquake events by magnitude, along with the
theoretical curve fitted from the selected cell in subfigure (c); (c) Voronoi model
representation.

4.2. Spatial Distribution of b-values,
Uncertainty, and Implications

Figure 5 reveals significant spatial variability
in b-values across Java and surrounding
regions, highlighting key seismotectonic
contrasts. In panel (a), high b-values (b > 1.2)
are concentrated in southwest Lampung and
south of Bali, while low b-values (b < 0.8)
dominate the Sunda Strait, northern Java,
Lombok, Sumbawa, and parts of Sumba—areas.
Moderate b-values (b = 0.8–1.0) form a
relatively continuous band along the southern
coast and offshore Java. Panel (b) shows that
regions with low Median Absolute Deviation
(MAD), such as southern Java and Bali, have
stable b-value estimates, whereas higher MAD
values in sparsely populated or offshore areas
indicate greater uncertainty due to limited data.
Panel (c) confirms that well-sampled cells yield

more reliable estimates especially along the Java
Trench and major population centers, while
cells with fewer contributing models align with
zones of low seismicity and require cautious
interpretation.

To enhance the robustness of interpretation,
Figure 6 presents the spatial distribution of
median b-values after applying quality filters
based on MAD(b) < 0.5 and N(b) > 80. This
filtering criterion ensures that only b-value
estimates with high statistical stability (low
dispersion) and sufficient sampling (event-rich
cells) are visualized. The white regions in the
map represent cells excluded due to high
uncertainty or insufficient data. By focusing on
stable zones, the filtered map allows more
confident inferences about tectonic
segmentation and seismogenic behavior.
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Figure 5. (a) Spatial distribution of median b-values from the top 100
selected models; (b) Distribution of MAD (Median Absolute Deviation)
values; (c) Distribution of the number of b-values used to compute the
median and MAD in each cell (some cells in certain models may lack b-
values due to insufficient data). Events with magnitudes greater than
Mw 6.0 are represented by black circles.

Figure 6. Spatial distribution of median b-values from the top 100
selected models after filtered by MAD(b) < 0.5 and N(b) > 80. The white
color on the map represents median b-values outside the filter
parameters.

The spatial variability of b-values across Java
and surrounding areas thus provides insight

into regional seismotectonic segmentation.
Zones with high b-values (b > 1.2), such as
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southwest of Lampung and south of Bali, may
indicate areas dominated by small-magnitude
seismicity and heterogeneous crust which
represents weakly coupled zones. In contrast,
low b-values (b < 0.8) observed in segments of
the Sumatra fault system near the Sunda Strait,
inland faults across Java, and thrust faults north
of Bali, Lombok, and Sumbawa likely
correspond to asperities or zones of stress
concentration and mechanical locking (Scholz,
2015; Schorlemmer & Wiemer, 2005). These
patterns may pose seismic hazards comparable
to those from the megathrust.

A prominent pattern is the continuous zone
of moderate b-values (b = 0.8–1.0) along the
southern Java trench—from West to East Java—
reflecting a potentially transitional seismic
behaviour. This segment may be partially
coupled, not fully creeping nor completely
locked, and could represent an area of mixed
rupture potential. Compared to the higher b-
value zones in southwest Lampung and south of
Bali, the southern Java trench appears relatively
more locked.

This observation raises the possibility that
portions of the southern Java megathrust,
particularly offshore Central and East Java, may
represent seismic gap candidates—segments
that have not experienced large-magnitude
ruptures in recent decades despite
accumulating strain (Kelleher et al., 1973;
McCann et al., 1979). However, confirmation of
this hypothesis requires additional constraints,
such as geodetic strain rates, historical rupture
data, or slip deficit analysis.

When compared to previous studies that
used conventional grid-based methods, the
results of this study show several
improvements. For example, Rahayu and
Madrinovella (2024) analyzed b-values in the
Yogyakarta region using a fixed 1.5 × 1.5 km
grid and a 15 km radius. Their results revealed
low b-values (0.35–0.75) particularly near the
Opak and Ngalang faults, indicating high stress
accumulation. However, the use of fixed radius
and grid spacing, while achieving high
resolution, makes the estimates sensitive to

local data availability and may exaggerate small-
scale variability. Moreover, their comparison
between different grid sizes showed
inconsistencies driven by the smoothing effect
of larger radii (e.g., 3 × 3 km grid with 45 km
radius), emphasizing the methodological bias
inherent in parameter choices.

Arubi et al. (2022) applied a Fixed Mc
method with 0.1° × 0.1° grid spacing across Java
and reported that b-values ranged from 0.6 to
2.6, with the Java megathrust averaging 1.19 ±
0.20. Although the wide range of values reflects
large-scale variability, fixed gridding likely
contributed to artificial discontinuities,
especially near the boundaries of data-rich and
data-poor regions. Similarly, Arimuko et al.
(2023) identified low b-value zones in western
Java’s subduction interface, indicating seismic
gap potential.

In contrast, the present study adopts a fully
data-driven, adaptive spatial partitioning
approach using Voronoi tessellation with
Sobol-distributed seeds, combined with
estimation of b-value via the OK1993 model.
The ensemble filtering strategy (e.g., via MAD
and cell number thresholds) further reduces the
risk of overinterpretation in poorly constrained
regions. As a result, this approach captures both
regional-scale trends and fine-scale
heterogeneities with greater statistical
confidence and spatial consistency, while
minimizing the influence of arbitrary parameter
settings.

While these spatial b-value patterns align
with known tectonic features and highlight the
importance of data-driven modelling
approaches in identifying megathrust
segmentation, the use of Sobol-based spatial
sampling provides uniform node coverage,
minimizing sampling bias compared to
traditional Voronoi or grid methods.
Additionally, the OK1993 formulation
improves robustness in regions with
heterogeneous event completeness.

Overall, the results confirm the effectiveness
of the Voronoi–OK1993 ensemble modelling
approach. This methodology not only captures
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meaningful spatial heterogeneity but also
ensures interpretability by emphasizing
statistically robust estimates. Compared to
conventional gridded approaches, this study
offers improved resolution without sacrificing
stability, making it a valuable tool for seismic
hazard modelling in the tectonically complex
Java region.

5. CONCLUSION
This study applied a Voronoi-based

ensemble modelling framework combined with
the OK1993 formulation and Sobol-distributed
spatial sampling to estimate the spatial
distribution of Gutenberg–Richter b-values in
Java and its surrounding regions. The results
show a clear segmentation pattern, with high b-
values (b > 1.2) in southwest Lampung and
south of Bali, moderate values (b = 0.8–1.0)
along the southern Java trench, and low values
(b < 0.8) in the Sunda Strait, northern Java, and
parts of the Nusa Tenggara islands. Notably,
low b-value zones also cover active fault systems
inland and offshore, highlighting their potential
seismic hazard. The ensemble approach offers
improved spatial stability, while the Sobol
sequence ensures uniform sampling coverage.

This modelling framework provides a more
objective alternative to conventional grid-based
approaches, especially in data-heterogeneous
regions. However, limitations remain, such as
the assumption of spatial uniformity within
each Voronoi cell and the sensitivity to
magnitude conversion and initial parameter
estimation. Future developments may
incorporate temporal changes in b-value and
extend the analysis to include slip deficit and
rupture history. These improvements could
help identify locked segments and potential
seismic gaps with greater confidence,
supporting more refined seismic hazard
assessments in subduction-prone regions like
Java.
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