doi: 10.23960/jge.v4i2.18

IDENTIFIKASI STRUKTUR BAWAH PERMUKAAN MENGGUNAKAN METODE MAGNETOTELLURIK 2D DI DAERAH CEKUNGAN BINTUNI SEBAGAI POTENSI HIDROKARBON

Ririn Yulianti*1, Syamsurijal Rasimeng¹, Karyanto¹, Hidayat², Noor Muhammad Indragiri²

Jurusan Teknik Geofisika, Universitas Lampung
 Jl. Prof. Dr. Sumantri Brojonegoro No.1, Bandar Lampung 35145
 Pusat Survei Geologi (PSG)
 Jl. Diponegoro No. 57, Bandung 40115
 Jurusan Teknik Geofisika, FT UNILA

e-mail: *1 ririnry12@gmail.com

ABSTRAK

Penelitian metode Magnetotellurik (MT) dilakukan pada daerah prospek hirdokarbon di Cekungan Bintuni, Propinsi Papua Barat. Penelitian ini bertujuan mengidentifikasi struktur bawah permukaan berdasarkan penampang resistivitas 2 dimensi. Proses pengolahan data penelitian ini antara lain; (i) proses transformasi data dari domain waktu ke domain frekuensi dengan trasformasi *Fourier*. (ii) proses filtering dengan robust, dimana robust ini terdiri dari tiga jenis yaitu *Robust No Weight, Robust Rho Variance* dan *Robust Ordinary Coherency*. (iii) seleksi XPR dan format data diubah menjadi *EDI file*. (iv) inversi untuk mendapatkan model penampang resistivitas 2D. Hasil yang didapatkan pada penelitian ini berdasarkan penampang resistivitas 2D yaitu pada formasi Klasafet memiliki nilai resistivitas yaitu 1 – 20 Ωm pada kedalaman 0 hingga 1000 meter di bawah permukaan dengan litologi sebagai batu lempung yang diidentifikasikan sebagai *caprock*, pada formasi Kemblengan nilai resistivitas 20 – 90 Ωm pada kedalaman 3500 meter di bawah permukaan dengan litologi batu pasir gampingan yang diidentifikasikan sebagai reservoir, pada formasi Kemum nilai resistivitas 20 – 32 Ωm pada kedalaman 6000 meter di bawah permukaan dengan litologi batu pasir yang diidentifikasikan sebagai *basement*.

ABSTRACT

Magnetotelluric research was done in hydrocarbon prospect area of Bintuni basin, West Papua province. The purpose of this research is to identificate hydrocarbon prospect in subsurface structure using 2D resistivity section. Data processing step for the research are; (i) Data transformation from time domain to frequency domain using Fourier transformation. (ii) Filtering process using Robust No Weight, Robust Rho Variance and Robust Ordinary Coherency. (iii) XPR selection and formatting data into EDI file. (iv) 2D resistivity section modeling using inversion. The result of this research based on 2D resistivity section in Klasafat formation have resistivity value about $1-20~\Omega m$. From 0 until 1000 meter below the surface the main lithology is claystone that identified as caprock. Kemblengan formation have resistivity value about $20-90~\Omega m$ in 3500 meter under surface with main lithology lime-sandstone and identified as a reservoir. Tipuma formation have resistivity value about $20-2~\Omega m$ in 8000 meter under surface with main lithology claystone. Kemun formation have resistivity value about $20-32~\Omega m$ in 6000 meter under surface with main lithology sandstone and identified as a basement.

Keywords—2D Magnetotelluric, Hydrocarbon, Reservoir.

1. PENDAHULUAN

Dengan bertambahnya tingkat populasi manusia di suatu negara dan kebutuhan energi sebagai pemenuhan kebutuhan manusia semakin yang bertambah menyebabkan pasokan energi semakin banyak. Salah satu sumber energi yang paling berpengaruh bagia suatu negara yaitu minyak dan gas bumi. Keberadaan dan penyebaran minyak bumi dipengaruhi oleh keadaan geologi setempat dan didapatkan dalam suatu cekungan sedimen.

Salah satu daerah di Indonesia yang memiliki potensi keberadaaan hidrokarbon yaitu Pulau Secara geologi Pulau Papua merupakan hasil tumbukan Lempeng Australia dengan Lempeng Pasifik yang berlangsung dari Miosen Awal hingga sekarang. Akibat adanya tumbukan tersebut sehingga struktur geologi dan bentuk Pulau Papua membentuk cekungancekungan yang diidentifikasi memiliki keberadaan hidrokarbon.

Salah satu cekungan yang dibuktikan dengan kaya akan kandungan fosil-fosil di daerah Papua yaitu Cekungan Bintuni. Maka dari itu pada penelitian ini dilakukan di kawasan cekungan Bintuni untuk mengetahui bagaimana struktur bawah permukaan cekungan yang tersebut dan untuk eksplorasi lanjut.

mengoptimalkan Untuk eksplorasi minyak bumi perlu dilakukan kegiatan studi geofisika dan geologi mengetahui karakteristik struktur bawah permukaan. Salah satu metode geofisika yang dapat digunakan yaitu metode Magnetotellurik (MT). Metode merupakan magnetotellurik metode elektromagnetik pasif yang memanfaatkan sumber magnet (H) dan medan listrik (E) dalam bumi untuk menentukan konduktivitas bawah permukaan bumi.

Dalam penentuan karakteristik struktur bawah permukaan dengan metode magnetotellurik 2D terdapat langkahlangkah yang perlu dilakukan. Pertamatama melakukan transformasi *Fourier* untuk mengubah data domain waktu ke domain frekuensi, melakukan *filtering noise* dengan *robust processing*, seleksi cross power, melakukan inversi 1D dan inversi 2D.

Penentuan karakteristik bawah permukaan untuk menentukan identifikasi struktur bawah permukaan yang berpotensi hidrokarbon dilakukan dengan mengalisis penampang resistivitas 2D yang telah dihasilkan.

1.2 Tujuan Penelitian

Tujuan dari penelitian ini adalah sebagai berikut:

- Mendapatkan pemodelan penampang resistivitas inversi 2D data magnetotellurik Cekungan Bintuni.
- 2. Mengetahui nilai resistivitas dan ketebalan lapisan batuan bawah permukaan.
- 3. Mengidentifikasi struktur geologi batuan potensi hidrokarbon berdasarkan penampang resistivitas 2D data magnetotellurik.

2. TINJAUAN PUSTKA

2.1 Geologi Regional

Lokasi penelitian ini terletak di area Teluk Bintuni di Kabupaten Papua Barat, Privinsi Papua yang dibatasi oleh luasan Cekungan Bintuni. Lokasi penelitian ditunjukkan pada **Gambar 1.** Secara geografis lokasi penelitian berada pada 1^0 42' 41.8'' S -2^0 12' 22.6'' LS dan 133^0 23' 7.9'' E -134^0 08' 42.2'' BT.

Dengan kelompok geologi yang ada di daerah tersebut berupa kelompok tersier berupa formasi Steenkool dengan litologi batu pasir dan lempung, formasi Klasafet dengan litologi batu pasir dan lempung, New Guinea Limestone dengan litologi batu gamping dan lempung. Kelompok pretersier berupa formasi Kemblengan dengan litologi batu pasir gampingan dan lempung, formasi Tipuma dengan litologi batu lempung, serta formasi Kemum dengan litologi batu pasir.

Geomorfologi Papua Barat mengalami deformasi pada umur Tersier Akhir, pada masa ini terjadi proses transgresi yang besar yang berarah barat daya dan berakhir pada New Guinea Mobile Belt, sehingga berbentuk kepala dan leher burung. Tatanan geologi daerah KB dibentuk oleh adanya kompresi pada umur Paleogen tepatnya Oligose-Resen (Marten, 2012). Fisiografi daerah ini dipengaruhi oleh sebaran batuan serta keadaan strukturnya. Setiap satuan fisiografi mencerminkan batuan tertentu. Robinson dkk., (1990) telah mengelompokkan rupa bumi di Teluk Bintuni ke dalam dua empat fisiografi, yaitu : dataran rendah, perbukitan rendah, perbukitan bergelombang dan dataran alluvial.

Cekungan Bintuni terbentuk saat **Tersier** Akhir yang mengalami Plio-Pleistosen perkembangan selama bersamaan dengan pengangkatan pegunungan lupatan Lengguru (Lengguru Foldbelt) di sebelah timur dan Tinggian Kemum sebelah (Pigram utara Sukanta, 1981). Kolom stratigrafi daerah penelitian dapat dilihat pada Gambar 2.

Geologi Papua dipengaruhi tektonik besar vang bertumbukan dan serentak aktif Gambar 3. Struktur regional Papua terdapat pada Gambar 4 dan elemen tektonik kepala burung Papua terdapat pada Gambar 5.

Tektonik Papua, secara umum dapat dibedakan menjadi dua bagian, yaitu Badan Burung atau Papua bagian timur dan Kepala Burung atau Papua bagian barat. Kedua bagian ini menunjukkan pola kelurusan barat-timur yang ditunjukan oleh Tinggian Kemum di Kepala Burung dan Central Range di Badan Burung, Kedua pola ini dipisahkan oleh Jalur Lipatan Anjakan Lengguru berarah baratdayatenggara di daerah Leher Burung

dan juga oleh Teluk Cenderawasih (Dow dan Sukamto, 1984).

3. TEORI DASAR

3.1 Dasar Metode Magnetotellurik

Metoda magnetotellurik (MT) merupakan salah satu metoda eksplorasi geofisika yang memanfaatkan medan elektromagnetik alam. Medan tersebut ditimbulkan oleh berbagai proses fisik yang cukup kompleks sehingga spektrum frekuensinya sangat lebar (10⁻⁵ Pada frekuensi yang $Hz - 10^4 Hz$). cukup rendah (kurang dari 1 Hz), solar wind yang mengandung partikel-partikel bermuatan listrik berinteraksi dengan medan magnet permanen bumi sehingga menyebabkan variasi medan EM (Vozoff, 1991).

3.2 Persamaan Maxwell

Pada metode MT menggunakan beberapa persamaan, salah satunya yaitu persamaan Maxwell. Persamaan Maxwell merupakan sintesa hasil-hasil eksperimen (empiris) mengenai fenomena listrik magnet yang didapatkan oleh Faraday, Ampere, Gauss, Coulomb disamping yang dilakukan oleh Maxwell sendiri. Dalam bentuk diferensial, persamaan Maxwell dalam domain frekuensi dapat dituliskan sebagai berikut:

Scoagar bernkut.

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 (1a)

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$
 (1b)

$$\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t} \tag{1b}$$

$$\nabla \cdot \vec{D} = q \tag{1c}$$

$$\nabla \cdot \vec{B} = 0 \tag{1d}$$

dimana:

 \overline{E} : vektor medan listrik (volt/m)

 \overline{B} : vektor fluks atau induksi magnetik (weber/m² atau tesla)

 \overline{H} : vektor medan magnet (ampere/m)

 \vec{l} : vektor rapat arus (ampere/m²)

D: vektor perpindahan listrik (coulomb/m²)
q: rapat muatan listrik (coulomb/m³)
(Telford, dkk., 2004).

3.3 Skin Depth

Pada metode MT terdapat skin depth. Besaran skin depth digunakan untuk memperkirakan kedalaman penetrasi atau kedalaman investigasi gelombang elektromagnetik. Adapun skin depth dalam metode Magnetotellurik dapat dituliskan dalam (**Persamaan 2**) berikut ini:

$$\delta = 503 \sqrt{\frac{\rho}{f}} \tag{2}$$

Dimana δ adalah kedalaman penetrasi (m), ρ adalah resistivitas medium (ohm. m). Sementara f adalah nilai frekuensi dari gelombang EM tersebut (Simpson dan Karsten, 2005).

3.4 Metode Pengukuran MT

Dalam metode pengukuran MT, terdapat dua metode pengukuran yang dapat membantu dalam proses pemodelan atau interpretasi tahap awal, yaitu antara lain:

- 1. Transverse Electric Mode
 Pada komponen yang menunjukan
 medan listriknya sejajar dengan arah
 struktur utama dinamakan Transvers
 Electric (TE) mode atau juga disebut
 E-Polarization.
- 2. Transverse Magnetic Mode
 Pada komponen yang menunjukan
 medan magnet yang sejajar dengan
 arah struktur utama dinamakan
 Transverse Magnetic (TM) mode atau
 disebut juga B-Polarization.

(Unsworth, 2006)...

3.5 Pengolahan Data MT

Pengolahan data MT dilakukan dari data mentah berupa *time series* sampai diperoleh nilai resistivitas semu dan fase. Teori yang digunakan pada proses pengolahan data MT diantaranya

1. Fourier Transform untuk mengubah data time series domain menjadi frequency domain menggunakan (Persamaan 3):

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$
 (3)

(Rulia, 2012).

- 2. Robust processing yang berguna sebagai filter noise awal. Robust processing adalah teknik pemprosesan statistical yang menggunakan bobot iterative dari residual untuk mengidentifikasi dan menghapus data yang menyimpang oleh noise (Rulia, 2012).
- 3. Menghitung nilai dari impedansi. fungsi transfer magnetotellurik untuk memperoleh tensor impedansi adalah sebagai berikut:

$$\begin{pmatrix} Ex \\ Ey \end{pmatrix} = \begin{bmatrix} Z_{xx} & Z_{xy} \\ Z_{yx} & Z_{yy} \end{bmatrix} \begin{pmatrix} Hx \\ Hy \end{pmatrix} \tag{4}$$

Resistivitas semu untuk lapisan Bumi diperoleh dari (**Persamaan 5**):

$$\rho_a = \frac{1}{\omega \mu} \left| \frac{E_x}{H_y} \right|^2 \tag{5}$$

Bagian diagonal dari impedansi tensor untuk pendekatan bumi 2-D adalah nol:

$$Z = \begin{bmatrix} 0 & Z_{xy} \\ Z_{yx} & 0 \end{bmatrix}$$

dimana

$$Z_{xy} = Z_{TE} = \frac{E_x}{H_y}$$

$$Z_{yx} = Z_{TM} = \frac{E_y}{H_x}$$
(6a)

Dengan demikian, nilai resistivitas semu dapat didefinisikan sebagai :

$$\rho_{xy} = \frac{1}{\omega \mu} \left| \frac{E_x}{H_y} \right|^2 \tag{7a}$$

$$\rho_{yx} = \frac{1}{\omega \mu} \left| \frac{E_y}{H_x} \right|^2 \tag{7b}$$

sedangkan fase, dapat didefinisikan sebagai :

$$\Phi_{yx} = tan^{-1} \left(\frac{im(\frac{Ey}{H_x})}{\frac{Ey}{re(\frac{Ey}{H_x})}} \right)$$
(8b)

(Dewi, 2012).

Melakukan inversi 1 dimensi dengan menggunakan metode inversi Bostick dan inversi Occam sedangkan inversi 2 dimensi menggunakan metode inversi Nonlinear Conjugate Gradient (NLCG) (Amriyah, 2012).

3.6 Petroleum System

Petroleum system merupakan sebuah sistem yang menjadi panduan utama dalam eksplorasi hidrokarbon. Sistem digunakan untuk mengetahui keadaan geologi dimana minyak dan gas bumi terakumulasi (Koesoemadinata, 1980).

1. Batuan Sumber

Batuan sumber adalah batuan yang merupakan tempat minyak dan gas bumi terbentuk. Pada umumnya batuan sumber ini berupa lapisan serpih (shale) yang tebal mengandung material organik.

2. Migrasi

Migrasi adalah perpindahan hidrokarbon dari batuan sumber melewati rekahan dan pori-pori batuan waduk menuju tempat yang lebih tinggi.

3. Batuan Reservoar

Batuan reservoar merupakan batuan berpori atau retak-retak, yang dapat menyimpan dan melewatkan fluida.

4. Lapisan penutup

Lapisan penutup merupakan lapisan pelindung yang bersifat tak permeabel yang dapat berupa lapisan lempung, shale yang tak retak, batugamping pejal atau lapisan tebal dari batuan garam.

5. Perangkap (*trap*)

Secara geologi perangkap merupakan tempat terjebaknya minyak dan gasbumi dapat dikelompokan dalam tiga jenis perangkap, yaitu struktur, perangkap perangkap stratigrafi dan perangkap kombinasi dari keduanya.

METODE PENELITIAN

4.1 Alat dan Bahan

Adapun alat dan bahan yang digunakan dalam kerja praktek ini adalah sebagai berikut:

- Laptop Acer Aspire 4732
- Software Synchro Time Series View
- Software SSMT2000
- Software MTEditor
- Software WinGlink
- Software Microsoft Word dan Microsoft Excel 2007

4.2 Pengolahan Data

Transformasi **4.2.1 Proses** Fourier (FFT)

Data yang dihasilkan dari perekaman alat MT berupa time series, untuk melakukan pengolahan selanjutnya dilakukan pengubahan data dari domain time series ke domain frekuensi untuk mendapatkan nilai resistivitas dan phase. Pengubahan data time series ke frekuensi dilakukan dengan transformasi dapat software SSMT2000 Fourier pada ditunjukkan pada Gambar 6.

4.2.2 Robust Processing

Data yang telah menjadi domain frekuensi masih terdapat noise, untuk mereduksi noise atau filtering noise perlu dilakukan robust processing. Robust processing memiliki tiga tipe, yaitu robust no weight, rho variance dan ordinary coherency. Proses robust ditunjukkan pada Gambar 7.

Setelah melakukan ketiga robust tersebut, selanjutnya menghitung nilai koherensi masing-masing robust. Untuk nilai koherensi yang tertinggi dilakukan robust processing upgrade. Kemudian hitung kembali nilai koherensi robust processing upgrade, apabila nilai koherensi ≥ 75% maka dapat dilanjutkan ke tahapan proses selanjutnya. Tetapi apabila nilai koherensi ≤ 75% maka dilakukan combine. Settingan robust processing upgrade ditunjukkan pada Gambar 8.

4.2.3 Seleksi Time Series

Data mentah hasil pengukuran di merupakan data lapangan medan elektromagnetik yang terekam terhadap waktu. Pengukuran MT yang dilakukan selama 1 hari penuh menyebabkan data yang diperoleh untuk satu stasiun cukup panjang. Dari panjangnya data yang diperoleh tersebut, tidak semua data merupakan data yang baik. Kemungkinan adanya noise dalam data masih sangat terjadi. tersebut besar Noise dapat mempengaruhi nilai koherensi yang diperoleh, untuk mendapatkan nilai koherensi yang besar dapat dilakukan dengan beberapa cara, salah satunya dengan seleksi time series ditunjukkan pada Gambar 9.

4.2.4 Seleksi Cross Power

Setelah memperoleh data dalam domain frekuensi maka data tersebut dapat dibuka dalam program *MTEditor*. Data tersebut ditampilkan dalam bentuk 2 kurva MT yaitu kurva frekuensi vs *apparent resistivity* dan kurva frekuensi vs *phase*. Kurva yang ditampilkan masih acak atau belum teratur. Oleh karena itu, perlu dilakukan proses seleksi *cross power* untuk memperoleh kurva MT yang lebih baik lagi. Kurva sebelum dilakukan seleksi ditunjukkan pada **Gambar 10a** Kurva setelah dilakukan seleksi ditunjukkan pada **Gambar 10b**.

4.2.5 Inversi

Inversi merupakan kegiatan untuk kondisi model mendapatkan bawah permukaan, proses inversi dilakukan dengan menggunakan software WinGlink. Inversi dilakukan dengan 2 tahapan, yaitu inversi 1 dimensi yang ditunjukkan pada Gambar 11 untuk mengetahui nilai resistivitas serta ketebalan masing-masing lapisan. Yang kedua yaitu inversi 2 dimensi untuk mendapatkan penampang resistivitas 2 dimensi untuk dilakukan interpretasi.

5. HASIL DAN PEMBAHASAN

5.1 Hasil Pengamatan

Data yang digunakan dalam penelitian ini merupakan data sekunder Magnetotellurik di kawasan Cekungan Bintuni yang terletak di Pulau Papua bagian barat. Pada penelitian ini menggunakan data pengukuran sebanyak 1 lintasan dengan jumlah titik pengukuran MT sebanyak 5 titik. Waktu pengukuran MT dilakukan selama ±12 jam. Arah lintasan pengukuran yaitu timurlaut – baratdaya.

Pengolahan data dilakukan yang mengurangi bertujuan untuk mereduksi *noise* pada data telah dilakukan dengan hasil yang baik. Dari 5 titik memiliki nilai koherensi berbeda - beda ditunjukkan pada **Tabel 1.** dan telah ditingkatkan menggunakan pengolahan robust processing ditunjukkan Tabel 2, kemudian dilakukan upgrade robust ditunjukkan pada Tabel 3. Untuk koherensi di bawah 75% dilakukan seleksi time series pada **Tabel 4.**

Pada **Tabel 4.** terlihat nilai koherensi setelah dilakukan seleksi *time series* bertambah atau naik. Tetapi terdapat tiga titik dengan nilai koherensi masih dibawah 75%. Setelah melakukan seleksi *time series*, semua titik pengukuran baik dengan nilai koherensi di atas 75% maupun di

bawah 75% dilanjutkan melakukan proses seleksi *cross power*. Tahap seleksi *cross power* dilakukan dengan mengedit atau *smoothing* kurva *apparent resistivity* dan *phase*.

Dari ke-5 data tersebut, masingmasing kurva memiliki kualitas data yang berbeda-beda. kreteria dari kualitas kurva MT dilihat berdasarkan *trend* dan *error bars*. Terdapat 4 kriteria dari kualitas kurva MT yaitu, *Excelent, Very Good, Good* dan *Fair*. Pembagian kelompok dari masing-masing kurva terdapat pada **Tabel** 5.

Setelah medapatkan kurva yang lebih smooth hasil dari seleksi cross power, maka dilakukan perhitungan kembali nilai koherensi dari masing-masing data. Hasil yang didapatkan yaitu terdapat pada **Tabel** 6.

5.2 Pembahasan

5.2.1 Hasil Inversi 1D

Pada inversi 1D akan menghasilkan kurva ketebalan lapisan beserta nilai resistivitas sebenarnya masing-masing lapisan. Kurva inversi 1D ini ditunjukkan pada **Tabel 7** hingga **Tabel 11**.

5.2.2 Hasil Inversi 2D

Inversi 2D terdiri dari satu lintasan dengan jumlah titik pengukuran sebanyak 5 titik dengan kedalaman sampai dengan 10000 meter di bawah permukaan.

Pemodelan 2D dimaksudkan untuk mengekstrasi informasi yang terkandung dalam data untuk memperkirakan distribusi tahanan jenis di bawah permukaan melalui model-model. Model hasil penampang inversi 2D terdapat pada **Gambar 12.**

Untuk mengetahui informasi distribusi tahanan jenis di bawah permukaan melalui model-model penampang 2D, perlu dilakukan korelasi antara informasi geologi daerah penelitian dari peta geologi lembar Ransiki dengan hasil penampang inversi

2D MT seperti pada **Gambar 13.** dan nilai tahanan jenis dari suatu batuan seperti pada **Tabel 12.**

Bersadarkan hasil interpretasi pada Gambar 13, pada daerah penelitian ini dari arah Baratdaya-Timurlaut yaitu pada bagian permukaan terdapat endapan tersier, dimana pada endapan tersier ini terdapat formasi Steenkool didominasi batu pasir dan batu lempung, formasi Klasafet di dominasi dengan batu pasir atau di dominasi batu lempung yang dibedakan dengan besar nilai resistivitas.

Di bawah endapan tersier terdapat endapan New Guinea Limestone, berdasarkan penelitian terdahulu endapan limestone pada petroleum system di Cekungan Bintuni dengan range nilai resistivitas tinggi merupakan endapan yang sebagai memiliki potensi reservoir. Berdasarkan petroleum system cekungan Bintuni untuk batuan reservoir pada cekungan ini terbagi menjadi dua jenis yaitu berupa batu pasir pada formasi Kemblengan dan batu gamping pada endapan New Guinea Limestone.

Di bawah endapan New Guinea Limestone terdapan endapan pretersier. Endapan pretersier terdiri dari formasi Kemblengan di dominasi batu pasir gampingan dengan nilai resistivitas tinggi dan formasi Tipuma di dominasi batu lempung dengan nilai resistivitas rendah. Endapan pretersier dengan nilai tahanan jenis yang rendah merupakan endapan yang memiliki potensi sebagai sourcerock pretersier di Cekungan Bintuni. Kemudian di bawah endapan pretersier formasi Kemum merupakan basement.

Penampang resistivitas 2D yang dihasilkan dapat disesuaikan dengan informasi geologi berdasarkan interpretasi geologi daerah penelitian dan nilai resistivitas batuan. Penampang resistivitas 2D terdapat pada **Gambar 14.**

Lintasan titik pengukuran MT ini memotong 2 lokasi rembesan minyak, yaitu titik BN05 dan BN06 yang dapat dilihat pada **Gambar 14**. Pada titik BN06 terdapat singkapan batuan yang diduga

pernah menjadi menjadi tempat keluarnya minyak (*migration*) ditandai dengan adanya singkapan yang rekah dan terisi oleh jejak hidrokarbon yang terlihat pada **Gambar 15**. Singkapan yang terbentuk dengan litologi batu pasir dengan nilai resistivitas $50 - 100 \Omega m$.

Pada Gambar 14. Terlihat minyak tidak terperangkap di dalam reservoir dikarenakan adanya struktur yang mengontrol keluarnya minyak di **Tempat** permukaan. potensi migas terperangkap ditunjukkan dengan adanya klosur yang terbentuk, yaitu pada klosur berbentuk horst.

Berdasarkan penampang reistivitas 2D terdapat endapan tersier dengan beberapa formasi yang terendapkan, yaitu formasi Klasafet dengan nilai resistivitas rendah yaitu $1 - 20 \Omega m$ dari kedalaman 0 hingga 1000 meter di bawah permukaan dengan litologi batu lempung diidentifikasikan sebagai caprock. Pada endapan New Guinea Limestone terdapat formasi Imskin dengan nilai resistivitas yang cukup rendah yaitu $0.62 - 6 \Omega m$ dari kedalaman sekitar 1000 hingga 3500 meter di bawah permukaan dengan litologi batu lempung. Pada endapan pretersier ini terdapat dua formasi yang terbentuk yaitu formasi Kemblengan memiliki nilai resistivitas batuan yang besar yaitu $20 - 90 \Omega m$ dengan litologi batu pasir gampingan diduga sebagai reservoir yang terdapat pada kedalaman sekitar 3500 meter di bawah permukaan. Formasi kedua yaitu formasi Tipuma memiliki nilai resistivitas batuan yang rendah antara $0.62 - 2 \Omega m$ litologi batu lempung yang terdapat pada kedalaman sekitar 8000 meter di bawah permukaan.

Dibawah formasi Tipuma terdapat formasi Kemum dengan nilai resistivitas batuan yang rendah yaitu antara $4-20~\Omega m$ dengan litologi batu lempung dan nilai resistivitas batuan yang tinggi yaitu antara $20-32~\Omega m$ yang dengan litologi batu pasir merupakan *basement* dari Cekungan

Bintuni terdapat pada kedalaman sekitar 6000 meter di bawah permukaan.

6. KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan hasil penelitian tersebut dapat disimpulkan sebagai berikut:

- Pemodelan penampang resistivitas sebanyak inversi 2D lintasan 1 memiliki nilai RMS error sebesar 1.8574% terdiri dari 5 titik data dengan kualitas data yang berbeda beda, antara lain untuk data yang excelent terdiri dari titik BN01 dan BN03, very good terdiri dari titik BN05, good terdiri dari titik BN04 dan fair terdiri dari titik BN06.
- Formasi Klasafet memiliki resistivitas $1 - 20 \Omega m$ pada kedalaman 0 hingga 1000 meter di bawah permukaan dengan litologi batu lempung, formasi **Imskin** nilai resistivitas $0.62 - 6 \Omega m$ pada kedalaman 1000 hingga 3500 meter di bawah permukaan dengan litologi batu lempung, formasi Kemblengan nilai resistivitas $20 - 90 \Omega m$ pada kedalaman 3500 meter di bawah permukaan dengan litologi batu pasir gampingan, pada formasi Tipuma nilai resistivitas $0.62 - 2 \Omega m$ pada 8000 meter di bawah kedalaman permukaan dengan litologi batu lempung, pada formasi Kemum nilai resistivitas 20 – 32 Ω m pada kedalaman 6000 meter di bawah permukaan dengan litologi batu pasir.
- 3. Struktur bawah permukaan yang diidentifikasi yaitu didapatkan adanya formasi hidrokarbon yang di Cekungan Bintuni berdasarkan penampang resistivitas 2D adalah batu lempung pada formasi Klasafet diduga sebagai *caprock*, batu pasir gampingan pada formasi Kemblengan diduga sebagai *reservoir*, batu pasir pada

formasi Kemum diduga sebagai basement.

6.2 Saran

Saran yang dapat diberikan yaitu dalam pengukuran data Magnetotellurik perlu dilakukan pengulangan pengukuran pada data yang tergolong buruk agar pada saat pemrosesan data mendapatkan hasil maksimal. Dikarenakan apabila pengukuran dilakukan kurang maksimal maka data yang akan dihasilkan pun tidak begitu baik.

DAFTAR PUSTAKA

- Amriyah, Q., 2012, Pemodelan Data Magnetotellurik Multidimensi Untuk Mendelineasi Sistem Geotermal Daerah Tawau, Malaysia, Skripsi Studi Fisika-FMIPA, Depok: Universitas Indonesia.
- Dewi, R., 2012, Pemrosesan Data Magnetotellurik Dengan Memperhitungkan Faktor Kalibrasi Menggunakan Matlab, Skripsi Studi Fisika-FMIPA, Depok: Universitas Indonesia.
- Dow, D. B., & Sukamto, R., 1984, Western Irian Jaya: the end-product ofoblique plateconvergence in the LateTertiary, American Association of Petroleum Geologists, Also published in Bulletin of the Geological Research and Development, Centre, Indonesia.
- Hamilton, W. R., 1979, Tectonics of the Indonesian Region, *Geological Survey Professional Paper*, US.
- Koesoemadinata, R. P., 1980, *Geologi Minyak dan Gas Bumi*, Jilid 1, ITB.
- LEMIGAS, 2005, Kuantifikasi Sumberdaya Hidrokarbon Cekungan Bintuni, LEMIGAS, Jakarta,

- Marten, R, 2012, Lithology and Fluid Prediction refresher, The Use (and Abuse) of Geophysics in Hydrocarbon Exploration and Development, BP Indonesia, Unpublished.
- Pigram, C. J., & Sukanta, U., 1981, Report on the geology of the Taminabuansheet area. Indonesian Geological Research and Development Centre, Open File Report.
- Robinson, G. P., Ryburn, R. J., Harahap, B.H., Tobing, S.I., Achdan, A., Bladon, G.M. & Pieters, P.E., 1990, Geologi Lembar Steenkool, Irian Jaya (Geologi of the Steenkool Sheet area, Irian Jaya), Geological Research and Development Centre, Indonesia.
- Rulia. C., 2012, Pengolahan Data Magnetotellurik 2-Dimensi Pada Panasbumi Lapangan Marana. Sulawesi Tengah, Skripsi Studi Fisika-FMIPA, Depok: Universitas Indonesia.
- Simpson, F. & Karsten, B., 2005, *Pratical Magnetotellurics*, Cambridge: Cambride University Press.
- Telford, W. M., Geldart, L. P., & Sheriff, R. E., 2004, *Applied Geophysics Second Edition*, Cambridge: Cambridge University Press.
- Unsworth, 2006, Overview of Electromagnetic Exploration Methods, University of Alberta.
- Vozoff, K, 1991, The Magnetotelluric method, Electromagnetic Methods in Applied Geophysics-Application, *Geophysics*, Vol. 2, *SEG Publishing*.

LAMPIRAN

Tabel 1. Nilai koherensi raw data

CTATION	KOHERENSI RAW DATA			
STATION	RV	OC	NW	
BN01	90.1592	90.4375	88.3544	
BN03	88.9836	88.8361	87.9948	
BN04	58.117	59.966	43.9974	
BN05	78.8826	80.5187	78.6339	
BN06	63.9559	65.4299	62.916	

Tabel 2. Nilai koherensi hasil *robust* terbaik

STATION	ROBUST TERBAIK			
	Rho XY	Rho YX	AVERAGE	
BN01	91.04689	89.82814	90.4375155	
BN03	92.92065	85.04649	88.9835721	
BN04	64.75795	55.17402	59.9659861	
BN05	85.80477	75.23273	80.5187495	
BN06	65.38363	65.47614	65.4298826	

Tabel 3. Nilai koherensi hasil *upgrading robust*

UPGRADING ROBUST				
ROBUST	Rho XY	Rho YX	AVERAGE	
OC UP	91.0996	91.8170	91.4583	
RV UP	93.8782	85.8454	89.8618	
OC UP	70.2400	58.3380	64.2890	
OC UP	85.7408	76.2312	80.9860	
OC UP	67.4260	72.8206	70.1233	

Tabel 4. Hasil koherensi seleksi *time* series

serves					
	TS				
Rho XY	Rho YX	AVERAGE			
-	-	-			
-	-	-			
83.77402	61.30295	72.53848536			
-	-	-			
73.31285	69.2556	71.28422606			

Tabel 5. Pengelompokkan Kurva

PENGELOMPOKKAN KURVA					
EXCELENT	EXCELENT VERY GOOD GOOD FAIR				
BN01	BN04	BN06			
BN03					

Tabel 6. Hasil koherensi seleksi *cross*

				_
STATION	XPR			
SIATION	ROBUST	Rho XY	Rho YX	AVERAGE
BN01	OC UP	91.51804	92.79604	92.157039
BN03	RV UP	94.04963	85.85107	89.950348
BN04	OC UP	83.0623	59.62062	71.341459
BN05	OC UP	85.84945	76.29041	81.06993
BN06	OC UP	69.71217	66.19208	67.952125

Tabel 7. Resistivitas sebenarnya dan ketebalan lapisan pada titik BN01

Depth to Top (m)	Depth to base (m)	True resistivity (Ωm)	Lithology
0	92.14	16.41	Claystone
92.14	114.29	16.39	Claystone
114.29	154.71	8.65	Claystone
154.71	202.9	16.73	Claystone
202.9	244.28	7.89	Claystone
244.28	263.79	25.71	Sandstone
263.79	1991.02	6.47	Claystone
1991.02	10000	1.84	Claystone

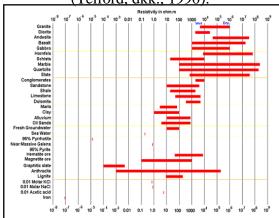
Tabel 8. Resistivitas sebenarnya dan ketebalan lapisan pada titik BN03

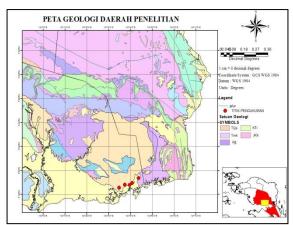
	D 1 103		
Depth	Depth	True	
to Top	to base	resistivity	Lithology
(m)	(m)	(Ωm)	
0	49.92	8.15	Claystone
49.92	70.52	33.48	Sandstone
70.52	71.01	17.5	Claystone
71.01	176.2	6.47	Claystone
176.2	872.96	11.17	Claystone
872.96	2028.36	6.01	Claystone
2028.36	5056.34	0.62	Claystone
5056.34	10000	2.05	Claystone

Tabel 9. Resistivitas sebenarnya dan ketebalan lapisan pada titik BN04

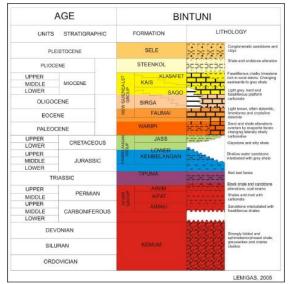
Depth to Top	Depth to base	True resistivity	Lithology
(m)	(m)	(Ωm)	
0	74.72	19.75	Claystone
74.72	268.56	11.25	Claystone

268.56	279.81	16.51	Claystone
279.81	509.27	9.24	Claystone
509.27	1080.66	18.87	Claystone
1080.66	3522.34	1.65	Claystone
3522.34	4322.79	29.77	Sandstone
4322.79	10000	90.89	Sandstone

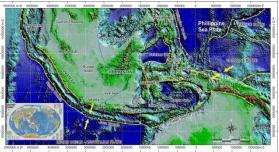

Tabel 10. Resistivitas sebenarnya dan ketebalan lapisan pada titik BN05

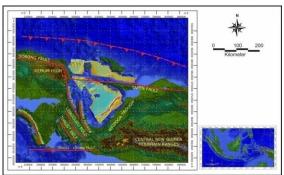

Depth to Top (m)	Depth to base (m)	True resistivity (Ωm)	Lithology
0	27.93	3.18	Claystone
27.93	47.94	9.73	Claystone
47.94	48.97	11.68	Claystone
48.97	112.76	4.35	Claystone
112.76	166.71	11.87	Claystone
166.71	375.01	21.32	Sandstone
375.01	439.29	5.68	Claystone
439.29	10000	4.08	Claystone

Tabel 11. Resistivitas sebenarnya dan ketebalan lapisan pada titik BN06

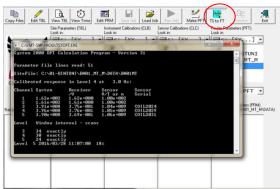

Depth to Top	Depth to base	True resistivity	Lithology
(m)	(m)	(Ωm)	
0	49.21	7.27	Claystone
49.21	67.33	18.94	Claystone
67.33	71.23	17.16	Claystone
71.23	132.43	7.17	Claystone
132.43	195.33	12.56	Claystone
195.33	1910.60	7.66	Claystone
1910.60	4598.23	3.70	Claystone
4598.23	10000	4.97	Claystone

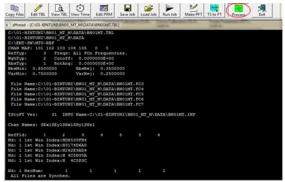
Tabel 12. Nilai resistivitas batuan (Telford, dkk., 1990).

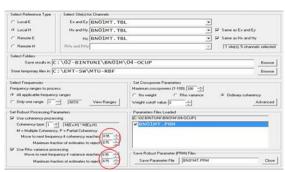


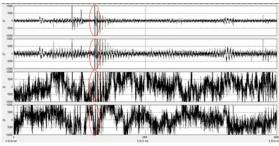

Gambar 1. Peta Geologi Daerah Penelitian (SRTM-90)

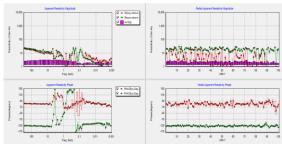
Gambar 2. Kolom Stratigrafi Cekungan Bintuni (LEMIGAS, 2005).


Gambar 3. Elemen tektonik Indonesia dan pergerakan lempeng tektonik (Hamilton, 1979).

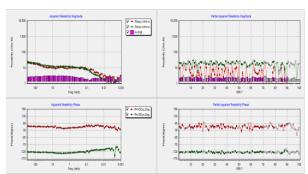

Gambar 4. Struktur Regional Papua (Dow dan Sukamto, 1984).


Gambar 5. Elemen Tektonik Kepala Burung (Pigram dkk., 1982).

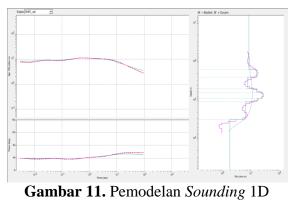

Gambar 6. Proses FFT


Gambar 7. Tampilan *Robust Processing*

Gambar 8. Tampilan Setting Robust Processing Upgrade



Gambar 9. Seleksi Time Series



Gambar 10a. Kurva Sebelum Seleksi *Cross Power*

Jurnal Geofisika Eksplorasi Vol /No.

Gambar 10b. Kurva Setelah Seleksi Cross Power

