PAPER NAME Revisi_243-1454-2-LE (2)_check.pdf	AUTHOR Salman Hamja Siombone
WORD COUNT 6139 Words	CHARACTER COUNT 37537 Characters
PAGE COUNT 17 Pages	FILE SIZE 789.2KB
SUBMISSION DATE Nov 23, 2022 1:34 PM GMT+7	REPORT DATE Nov 23, 2022 1:35 PM GMT+7

• 18% Overall Similarity

The combined total of all matches, including overlapping sources, for each database.

- 14% Internet database
- Crossref database
- 13% Submitted Works database

Excluded from Similarity Report

• Bibliographic material

• 4% Publications database

Crossref Posted Content database

• Cited material

ANALISIS SUHU PERMUKAAN DAN KONDISI GEOMORFOLOGI KAWASAN GEOTERMAL TEHORU MENGGUNAKAN LANDSAT-8 DAN DEM

⁴²SURFACE TEMPERATURE AND GEOMORPHOLOGY CONDITION ANALYSIS OF TEHORU GEOTHERMAL AREA USING LANDSAT-8 AND DEM

Salman Hamja Siombone^{1*}

¹Jurusan Pendidikan MIPA, STKIP Gotong Royong Masohi, Indonesia, 97514

Keywords:

Geomorphology; Geothermal; Landsat-8; Land Surface Temperature; Lineament.

Corespondent Email: salmansiombone@gmail.com

Abstrak. Penelitian menggunakan citra Landsat-8 dan DEM telah dilakukan untuk analsis³⁹uhu permukaan tanah (*land surface temperature*/LST) dan kondisi geomorfologi kawasan geotermal Desa Tehoru. Penelitian ini dilakukan pada area dengan luasan 71,23 km². Data citra Landsat-8 digunakan untuk analisis sebaran tutupan lahan dan LST. Seberan tutupan lahan diperoleh berdasakan klasifikasi nila.¹²*ormalized difference vegetation index* (NDVI). Data DEM digunakan untuk analisis kondisi geomorfologi daerah penelitian. Hasil analisis data menunjukkan bahwa daerah penelitian didominasi oleh lahan campuran dengan nilai NDVI rata-rata berkisar antara 0,302 - 0,338. Nilai LST di area penelitian berkisar antara 7,660°C - 33,453°C. Hasil analisis peta LST menunjukkan anomali LST tinggian lebih dominan pada kawasan permukiman. Anomali LST di sekitar titik manifestasi geotermal hanya terdeteksi sebagian kecil karena pengaruh tutupan lahan. Hasil analisis model topografi dan morfometri permukaan menunjukkan bahwa relief bergelombang dengan kemiringan lereng yang curam mendominasi daerah penelitian. Hasil analisis kelurusan geomorfologi, menunjukkan bahwa titiktitik manifestasi geotermal dominan berada pada kawasan dengan tingkat <mark>kerapatan kelurusan yang tinggi</mark>. Penelitian ini secara langsung dapat memberikan informasi terkait tutupan lahan, LST, dan kondisi geomorfologi pada kawasan geotermal Desa Tehoru.

Abstract. The stud, ⁸ sing Landsat-8 and DEM imagery has been carried out to analyze the land surface temperature (LST) and geomorphological conditions of the Tehoru village geothermal area. ²⁸ his study was conducted in an area of 71.23 km². Landsat-8 imagery data is used to analyze the distribution of land cover and LST. The distribution of land cover was obtained ²⁴ ased on the classification of normalized difference vegetation index (NDVI) values. DEM data is used to analyze the study area. The results of data analysis showed ⁸ hat the study area was dominated by mixed land with an average NDVI value ranging from 0.302-0.338.¹² the land surface

temperature in the study area ranged from 7.660° C to 33.453° C. The LST map analysis shows that the LST anomaly is more dominant in the residential area. The LST anomalies around the geothermal manifestation point were only detected partly due to the influence of land cover. The topographic model analysis and surface morphometry results show that wavy reliefs with steep slopes dominate the study area. The geomorphological lineament analysis results show that the dominant geothermal manifestation points are in areas with high lineament density. This study can directly provide information related to land cover, LST, and geomorphological conditions in the geothermal area of Tehoru village.

1. PENDAHULUAN

Tehoru³⁷dalah salah satu desa yang berada di pesisir selatan Pulau Seram. Desa Zehoru secara administratif berada di Kecamatan Tehoru, Kabupaten Maluku Tengah, Provinsi Maluku. Desa Tehoru merupakan salah satu desa yang memiliki prospek geotermal. Prospek geotermal Tehoru ditandai dengan adanya manifestasi geotermal¹⁴i permukaan berupa mata air panas, alterasi batuan dan tanah beruap.⁴⁶ Jata air panas Tehoru memiliki suhu permukaan yang berkisar dari 74°C-94.3°C (KESDM, 2017; Toisuta dkk., 2021). Keberadaan prospek geotermal Desa Tehoru diperkirakan memiliki keterkaitan dengan aktivitas tektonik kuat, yang disebabkan oleh tabrakan antara empeng Pulau Seram dengan lempeng benua Australia yang menyebabkan pembentukan batuan terobosan (intrusi) di kedalaman sebagai sumber panas (*heat source*) pada sistem geotermal Tehoru. Selain itu, hasil dari tabrakan lempeng tersebut menghasilkan beragam struktur geologi di daerah ini, yaitu berupa struktur patahan dan lipatan. Struktur lipatan berupa antiklin, sedangkan struktur patahan berupa sesar mendatar, sesar normal dan sesar oblig (KESDM, 2017).

Struktur geologi vang kompleks menjadi penyebab keunikan ³ kondisi geomorfologi di Daerah Tehoru. Kondisi geomorfologi di Daerah Tehoru nampak berupa bentangan alam dengan undulasi topografi mulai dari pantai, dataran, lembah, dan lereng curam hingga perbukitan. Daerah geotermal Tehoru tersusun atas ³ atuan geomorfologi perbukitan bergelombang dengan luas \pm 95 %, dan satuan pedataran dengan luas ± 5 % (Sulaeman dkk., 2010). Kondisi geomorfologi yang menantang dengan tutupan vegetasi yang lebat dapat menjadi suatu kendala dalam pengamatan maupun penyelidikan secara langsung terkait kedudukan dan penyebab keberadaan prospek geotermal di Desa Tehoru. Selain itu, kondisi topografi atau medan juga sangat mempengaruhi, akomodasi, lama waktu penelitian dan biaya penelitian.

Penyelidikan geologi permukaan seperti pengamatan langsung (ground check) terkait kedudukan dan penyebab keberadaan prospek geotermal di Desa Tehoru sejauh ini masih terbilang minim. Salah satu faktor yang mempengaruhi minimnya pengamatan langsung terkait prospek geotermal di Desa Tehoru dipengaruhi oleh kondisi bentangan alamnya yang kompleks. Alternatif terbaik untuk penyelidikan permukaan tanpa harus dilakukan pengamatan langsung terkait prospek geotermal tersebut adalah ³²engan memanfaatkan metode penginderaan jauh. Metode penginderaan jauh telah banyak digunakan dalam eksplorasi geotermal, di antaranya untuk menentukan suhu permukaan tanah, bentuk topografi, kemiringan lereng, dan pola kelurusan geomorfologi di lokasi prospek geotermal, baik pada kawasan vulkanik maupun tektonik (Herlambang & Novranza 2016; Ramadhan & Saputra 2021). 41 netode dengan Penelitian terdahulu penginderaan jauh yang digunakan untuk mengungkapkan hubungan kondisi geomorfologi dan prospek geotermal di kawasan geotermal diantaranya dilakukan oleh

Sukendar dkk. (2016) terkait analisis sebaran area prospektif geotermal Gunung Salak melalui aplikasi suhu permukaan tanah, indeks vegetasi dan geomorfologi; Bakruddin dkk. (2016) terkait analisis patahan pada lapangan geotermal Arjuno Welirang; Siombone dkk. (2021) terkait tutupan lahan, suhu permukaan tanah dan struktur geomorfologi di Kawasan Geotermal Tulehu; dan Asrafil dkk. (2022) terkait penyelidikan²² ontrol struktur geologi pada manifestasi geotermal di kawasan Lompio, Donggala, Sulawesi tengah. Hasil penelitian terdahulu terkait struktur geomorfologi pada kawasan geotermal di Indonesia sejauh ini terbilang sangat pesat, dan memberikan kontribusi ilmiah yang berarti.

Keberadaan prospek geotermal berupa mata air panas dan tanah beruap di Kawasan Geotermal Tehoru dapat dideteksi dengan memanfaatkan citra band *Thermal Infrared* (TIR) Landsat-8 melalui penentuan suhu permukaan tahan. Sedangkan kondisi geomorfologi dapat dikaji melalui pemodelan bentuk elevasi topografi, kemiringan lereng daerah studi, dan kajian strukur kelurusan geomorfologi dengan memanfaatkan citra DEM SRTM (Siombone, 2021). Pola kelurusan

geologi di permukaan bumi dapat mengindikasikan keberadaan struktur geologi seperti patahan dan rekahan yang mencirikan suatu proses tektonik di dalam kerak bumi. Struktur patahan dan rekahan tersebut dapat berfungsi sebagai zona yang potensial untuk meloloskan fluida (permeabel) bagi sirkulasi fluida panas pada sistem geotermal yang aitandai dengan kemunculan manifestasi di permukaan seperti mata air panas dan tanah beruap (Herlambang & Novranza, 2016; Han dkk., 2018).

Penelitian ini dilakukan di kawasan prospek geotermal Desa Tehoru, Kecamatan Tehoru, Kabupaten Maluku Tengah dengan luas penenitian ± 71,23 km². Secara geografi penelitian ini berada pada zona 52 Southern Hemisphere dengan posisi timuran dan vaitu: 129°29'25.98"E utaraan sampai 129°33'59.00"E 3°21'2.36"S dan sampai 3°25'35.38"S. Area penelitian beserta lokasi manifestasi geotermal Desa Tehoru ditunjukkan pada Gambar 1. Sedangkan titik mata air panas dan titik tanah beruap ditunjukkan pada Gambar 2.

Gambar 1. Lokasi manifestasi geotermal Desa Tehoru.

Gambar 2. (a) Titik mata air panas dan (b) Titik tanah beruap di kawasan geotermal Desa Tehoru.

2. TINJAUAN PUSTAKA

ecara fisiografi Daerah Tehoru termasuk pada Busur Banda Dalam tidak bergunungapi yang disusun oleh formasi batuan malihan (metamorf) berumur Perm-Trias yaitu atuan filit, (PTf), sekis biotit (PTsb), sekis mika (PTsm), dan sekis kuarsa (PTsk) (KESDM, 2017). Daerah geotermal Desa Tehoru secara geologis merupakan kawasan tektonik yang dipengaruhi oleh dimbukan lempeng Pulau Seram dan lempeng benua Australia. Tumbukan lempeng tersebut memicu pembentukan beragam struktur geologi yang berkembang pada formasi batuan metamorf mulai dari struktur lipatan dan struktur patahan (lihat Gambar 3). Struktur lipatan yang terbentuk Gerupa antiklin, dengan orientasi relatif baratlaut-tenggara, sedangkan struktur patahan terdiri dari dominan sesar mendatar, sesar obliq dan sesar normal. Sesar mendatar umumnya memiliki orientasi barattimur, baratlaut-tenggara dan baratdayatimurlaut. Sesar obliq memiliki oreintasi relatif baratlaut-tenggara, sedangkan sesar normal memiliki orientasi relatif utara-selatan (Sulaeman dkk., 2010; KESDM, 2017).

Struktur lipatan dan sesar-sesar yang berkembang di Kawasan geotermal Tehoru tersebut merupakan zona-zona lemah dan area prospektif yang bersifat permeabel dan dapat berfungsi sebagai jalur bagi sirkulasi fluida panas pada sistem geotermal. Aktivitas panas pada dapur magma dapat menerobos melalui rekah-rekahan (zona lemah) yang ada di sekitar jalur sesar pada Kawasan geotermal Tehoru, sehingga memicu munculnya manifestasi geotermal diermukaan, berupa mata air panas, tanah beruap dan alterasi <mark>batuan</mark>. Secara umum dapat dikatakan bahwa struktur geologi berupa sesar dan lipatan memiliki peran dalam mengontrol kemunculan manifestasi geotermal di Kawasan Geotermal Desa Tehoru (Sulaeman dkk., 2010).

Gambar 3. Peta Geologi Tehoru (Modifikasi dari KESDM, 2017).

Kompleksitas struktur geologi secara langsung berdampak pada kondisi geomorfologi di Desa Tehoru, yaitu berupa undulasi topografi yang menantang dengan tutupan vegetasi yang rapat. Kondisi medan dan tutupan vegetasi menjadikan metode penginderaan jauh sebagai solusi terbaik dalam penyelidikan terkait suhu permukaan tanah dan kondisi geomorfologi di daerah prospek geotermal Tehoru.¹⁸ enginderaan jauh (*remote sensing*) adalah ilmu, teknik dan seni untuk mendapatkan informasi atau data terkait keadaan fisik suatu objek, target, dan sasaran, serta gejala alam tanpa sentuhan atau kontak langsung dengan benda atau target tersebut (Soenarmo, 2009). Pengoperasian metode penginderan jauh ini memanfaatkan data citra satelit berupa atra Landsat-8 dan DEM SRTM (Shuttle Radar Topography Mission).

Landsat-8 atelit merupakan satelit obeservasi bumi yang dipelopori oleh NASA (National Aeronautics and Space dengan Grbit polar tipe Administration) sunsynchronous dengan sudut inklinasi 98,2° pada ketinggian 705 km di atas khatulistiwa (USGS 2016). Terdapat dua buah sensor pada Zandsat-8 vaitu sensor OLI (Operational Land Imager) dan TIRS (Thermal Infrared Sensor). Data dari kedua sensor tersebut tediri atas kanal-kanal band ang memiliki fungsi yang berbeda-beda, dan dapat digunakan dalam pemantauan kondisi permukaan bumi sesuai spesifikasi dan kegunaannya masing-masing. Data Landsat-8 sejauh ini, telah menunjukkan kemampuan dalam pemetaan dan pemantauan tutupan lahan dan kondisi biofisik permukaan tanah, perubahan temporal suhu permukaan tanah dan sifat-sifat geofisika. Data Landsat-8 sejauh ini, telah banyak digunakan dalam banyak penyelidikan kebumian mulai dari penyelidikan permukaan bumi vang berhubungan dengan geologi, geomorfologi sampai pada eksplorasi geotermal pada kawasan vulkanik maupun tektonik (Siombone dkk., 2021).

Data dari sensor OLI Landsat-8 berupa band 4 (cahaya tampak merah) dan band 5 (inframerah dekat) akan digunakan dalam penentuan tutupan lahan (*land cover*). Klasifikasi tutapan lahan aidasarkan pada nilai NDVI (*normalized difference vegetation index*). Vilai NDVI merupakan rasio yang dapat dimanfaatkan untuk menggambarkan seberapa rapat kondisi vegetasi di suatu kawasan (Azhari dkk., 2016). Sedangkan, suhu

(lands surfac permukaan tanah temperature/LST)_akan ditentukan melalui pemanfaatan data¹⁹and-10 (*thermal infrared* 1) pada sensor TIRS Landsat-8 (Mia dkk., 2017). NDVI dan LST telah Nilai banyak dimanfaatkan dalam eksplorasi geotemal di berbagai belahan bumi, terlebih lagi dalam pemantauan aktivitas termal pada kawasan vulkanik maupun tektonik di Indonesia. Penelitian dengan pemenfaatan nilai NDVI dan LST telah diterapkan oleh Mia dkk. (2017) dalam monitoring aktivitas geotermal di kawasan vulkanik aktif, Aso Jepang; kemudian Zaini dkk. (2022) menerapakan nilai NDVI dan LST dalam eksplorasi potensi geotermal dari Gunung Api Peut Sague, Aceh Indonesia. Selain itu, pemanfaatan nilai NDVI dan LST telah diterapkan dalam eksplorasi geotermal di kawasan tektonik daerah geotermal Hatuasa Tulehu, Maluku, Indonesia oleh Siombone dkk. (2021) melalui penentuan tutupan lahan, suhu permukaan tanah dan kondisi geomorfologi pada kawasan tersebut. Aktivitas termal suatu permukaan yang terpantau melalui nilai LST pada area geotermal di kawasan vulkanik ataupun tektonik sangat dipengaruhi oleh tutupan lahan berdasarkan nilai NDVI. Hasil analisis nilai NDVI rendah dan LST tinggi sangat berkaitan dengan perubahan vegetasi dan status termal daerah geotemal (Zaini dkk., 2022).

Kajian kondisi geomorfologi baik itu bentuk model topografi, struktur dan pola kelurusan geomorfologi di daerah studi akan didalami dengan memanfaatkan data citra DEM. Data citra DEM merupakan data spasial vang dapat digunakan untuk memvisualisasikan kondisi²opografi dan relief permukaan suatu kawasan. Aplikasi DEM pada eksplorasi geotermal dapat dimanfaatkan untuk menggambarkan topografi dan struktur geologi (Ramadhan & Saputra, 2021). Data citra DEM SRTM dapat dibentuk menjadi model elevasi topografi 3D dan morfometri permukaan 3D. Selain itu, data DEM SRTM dapat digunakan untuk mengkaji struktur dan pola kelurusuan geomorfologi (Siombone dkk., 2021). Kelurusan geomorfologi adalah kenampakan garis lurus (fitur linier) yang diekspresikan oleh jalur sungai atau lembah, dan diduga sebagai sesar atau rekahan.

Fitur kelurusan geomorfologi dapat mengindikasikan kemungkinan adanya 31 oruktur geologi yang dapat berupa sesar atau (Sukendar dkk., 2016). Jumlah rekahan kelurusan geomorfologi yang banyak di suatu dapat mengindikasikan kawasan daerah tersebut cenderung memiliki banyak ¹ukit dan bertekstur kasar, yang kemungkinan dipengaruhi oleh jenis batuan pada formasi geologi, maupun aktivitas struktur geologi ang berkembang pada daerah tersebut (Herlambang & Novranza, 2016). Struktur geologi seperti sesar dan rekahan yang terekspresi di permukaan bumi merupakan jalur permeabilitas yang memungkinkan terjadinya sirkulasi fluida dalam sistem geotermal (Iswahyudi dkk, 2014).

3.27 METODE PENELITIAN

Penelitian ini diawali dengan observasi lapangan, studi literatur, dan ahap pengolahan data. Data yang digunakan dalam penelitian ini adalah data citra satelit Landsat-8 (path: 108 dan row. 62) dan DEM SRTM yang diperoleh ari USGS-EROS (*U.S Geological Survey* – Resources Observation and Science). Terdapat tiga seri data Landsat-8 yang diunduh dengan waktu liputan yang berbeda. Data-data tersebut merupakan hasil rekaman satelit Landsat-8 pada 25 Mei 2015, 01 Mei 2018, dan 30 Desember 2019, dengan persentasi tutupan awan (cloud cover) berturut-turut yaitu 3,51, 2,60 dan 3,35. Selain itu, terdapat ²⁶ata sekunder yang digunakan dalam penelitian ini, yaitu Peta Geologi Lembar Tehoru (KESDM, 2017).

3.1_Pra Pengolahan Data (Pre-Proceesing)

Cebelum melakukan pengolahan terhadap citra *Landsat*-8, telebih dahulu dilakukan deteksi awan. Data citra satelit dikategorikan baik atau memenuhi syarat apabila persentasi tutupan awan lebih kecil dari 10% (Danoedoro, 2010). Deteksi awan dan kabut ini dilakukan sebelum pengunduhan data citra satelit dengan mempertimbangkan persentasi tutupan awan. Penentuan presentasi tutupan awan ini dilakukan dengan tujuan agar kualitas citra yang dipakai tetap terjaga, karena luas tutupan awan yang tinggi dapat menghilangkan sejumlah informasi permukaan bumi yang sesungguhnya.

🧶. Pengolahan Data (Processing)

Proses pengolahan data dibedakan menjadi dua tahapan utama, yaitu pengolahan citra Landsat-8 dan pengolahan citra DEM SRTM. Pengolahan data citra Lansat-8 dilakukan untuk menentukan nilai NDVI dan nilai LST dari daerah prospek geotermal Tehoru. Sedangkan, pengolahan data citra DEM SRTM dilakukan untuk melakukan pemodelan topografi, pemodelan mofometri permukaan dan penentuan pola sebaran kelurusan geomorfologi di daerah geotermal Tehoru.

⁴⁰.2.1. Normalized Difference Vegetation Index (NDVI)

Sebelum dilakukan perhitungan nilai NDVI, ⁴erlebih dahulu dilakukan koreksi radiometrik terhadap data citra band 4 (*Visible Red*) dan band 5 (*NIR*). Koreksi radiometrik betujuan untuk mereduksi kesalahan perekaman nilai pantulan sinar matahari dengan cara merubah ⁴ilai *Digital Number* (DN) menjadi nilai *Top of Atmosphere* (ToA) *Reflectance*. Setelah koreksi radiometrik dilakukan maka nilai NDVI dapat ditentukan dengan persamaan 1 atau 2, berikut:

$$NDVI = \frac{Float(NIR - Visible Red)}{Float(NIR + Visible Red)}$$
(1)

$$NDVI = \frac{\rho_{NIR} - \rho_{red}}{\rho_{NIR} + \rho_{red}}$$
(2)

Dimana, ρ_{NIR} adalah Reflektansi *Near Infrared* (*band* 5) dan ρ_{red} adalah Reflektansi *Visible Red* (*band* 4).

Hasil ekstraksi dori proses algoritma NDVI yang diperoleh akan menghasilkan rentang nilai antara –1 sampai 1, yang akan digunakan untuk merepresentasikan kondisi tutupan lahan (kerapatan vegetasi) suatu kawasan. Klasifikasi nilai NDVI untuk analisis tingkat kerapatan vegetasi dalam penelitian ini mengadopsi hasil penelitian Mia dkk. (2017), seperti pada² abel 1.

Tabel 1. Klasifikasi NDVI (Mia dkk., 2017).

Nilai NDVI	Keterangan
NDVI < 0,00	Badan Air atau Awan
$0,00 \le \text{NDVI} \le 0,20$	Tanah / <mark>Lahan</mark> terbuka
$0,20 \le \text{NDVI} \le 0,50$	Lahan Campuran
NDVI > 0,50	Vegetasi Rapat

3.2.2.² Land Surface Temperature (LST) Nilai LST merupakan keadaan atau kondisi dari suhu permukaan rata-rata suatu kawasan yang dikontrol langsung ¹⁰leh keseimbangan energi permukaan, atmosfer, sifat termal dari permukaan, dan media bawah permukaan tanah (Faridah & Krisbantoro, 2014). Untuk memperoleh sebaran nilai LST pada area penelitian, maka telebih dahulu dilakukan perhitungan terhadap nilai NDVI, Fraksi Vegetasi (Pv), emisivitas tanah (ε) dan Kecerahan Temperatur Satelit (BT).

Setelah diperoleh nilai NDVI, tahapan selanjutnya yaitu penentuan nilai Fraksi Vegetasi atau *Proportion of Vegetation* (Pv) yang ditentukan melalui persamaan (3), berikut:

$$Pv = \left(\frac{NDVI - NDVI_{min}}{NDVI_{max} - NDVI_{min}}\right)^2$$
(3)

Dimana NDVL adalah nilai NDVI untu setiap pixel, NDVI_{max} adalah representasi dari NDVI Vegetasi, dan $NDVI_{min}$ adalah representasi dari NDVI tanah atau objek yang mengandung air.

Nilat²v yang diperoleh tersebut kemudian digunakan dalam perhitungan nilai emisivitas (ε). Perhitungan nilai emisivitas dilakukan dengan menggunaan persamaan (4), berikut:

$$\varepsilon = \mathbf{m} \cdot \mathbf{P} \mathbf{V} + \mathbf{n} \tag{4}$$

Dengan, $m = \varepsilon_v - \varepsilon_s - (1 - \varepsilon_s)F\varepsilon_v$, $n = \varepsilon_s + (1 - \varepsilon_s)F\varepsilon_v$. Dimana ε_s adalah emisiviatas tanah (*soil*) dan bernilai 0,97, dan ε_v adalah emisivitas vegetasi dan bernilai 0,99, sedangkan F adalah *factor shape* dengan asumsi distribusi geometris yang berbeda dan bernilai 0,55, Sabrino (Qin dkk., 2011). Melalui pesamaan di atas, sehingga diperoleh:

$$\varepsilon = 0,0037 \cdot P_v + 0.98$$
 (5)

⁴Vilai *LST* dihitung dengan mengolah data citra *thermal band* sensor TIRS-2 pada *Landsat*-8, yaitu *band* 10. Untuk memperoleh nilai *LST*, langkah awal harus dilakukan koreksi *radiance* yang dilakukan anengubah nilai DN menjadi nilai ToA *Radiance* menggunakan persamaan (6), berikut:

$$L_{\lambda} = M_L \cdot Q_{\text{cal}} + A_L \tag{6}$$

di mana, L_{λ} adalah ToA radiance Thermal band (W m² srad¹µm⁻¹), M_L adalah taktor skala pengali radiance pada band 10, Q_{cal} adalah nilai DN tiap piksel, dan A_L adalah faktor skala penjumlah radiance pada band.

Band 10 yang telah terkoreksi radiance, kemudian digunakan dalam perhitungan untuk memperoleh kecerahan temperatur atau *Brigtness Temperature* (BT) satelit. Perhitungan rilai kecerahan temperatur dilakuan menggunakan persamaan (7), berikut:

$$BT = \frac{K_2}{\ln\left(1 + \frac{K_1}{L_\lambda}\right)} - 273,15\tag{7}$$

dimana, *BT* adalah ¹kecerahan temperatur sensor satelit (°C), L_{λ} adalah spektral *radiance thermal band* (W.m².*srad*¹. μ m⁻¹), K₁ adalah konstanta konversi *thermal* 1 untuk *band*, dan K₂ adalah konstanta konversi *thermal* 2 untuk *band*.

Data *BT* yang diperoleh kemudian gunakan dalam perhitungan untuk memperoleh nilai LST. ¹Ailai *LST* dihitung dengan persamaan yang diberikan oleh Jimenez-Munoz & Sobrino (Qin dkk., 2011) seperti pada persamaan (8), berikut:

$$LST = \frac{BT}{1 + (\lambda_{band10,11} \cdot \frac{P_{43}}{43} \ln \varepsilon}$$
(8)

dengan, *LST* adalah suhu permukaan tanah (°C), *BT* adalah kecerahan temperatur sensor satelit (°C), λ adalah panjang gelombang emisi *radiance*, $\lambda_{Band 10} = 10,89 \ \mu\text{m}$, *h* adalah konstanta Planck, 6,626 × 10⁻³⁴Js, c adalah kecepatan cahaya, 2,998 × 10⁸ m.s⁻¹, j adalah konstanta Boltzmann, 1,38 \times 10⁻²³ J°C⁻¹ dan ε adalah nilai emisivitas tanah.

3.2.3. Struktur Geomorfologi

Kondisi struktur geomorfologi di daerah Penelitian akan dikaji dengan memanfaatkan data citra DEM SRTM. Data DEM SRTM untuk daerah studi akan diolah menjadi model topografi 3D, model morfometri 3D, dan peta kelurusan struktur geomorfologi. Pengolahan model topografi 3D, model morfometri 3D dan peta kelurusan struktur memanfaatkan aplikasi *Global Mapper* v.19. Model topografi 3D digunakan untuk memvisualisasikan ketinggian atau relief permukaan daerah studi. Model morfometri 3D daerah penelitian digunakan untuk mengklasifikasi kemiringan lereng. Klasifikasi kelas kemiringan lereng serta reprsentasi warna dari kemiringan mengacu pada saran dan penelitian Van Zuidam tahun 1985. Klasifikasi kemiringan lereng ditunjukkan pada **Tabel 2**. Sedangkan peta kelurusan geomorfologi di area penelitian dibentuk melalui analisis kelurusan secara visual pada kelurusan lembahan dengan *azimuth* 45° dan *dip* 90°. Data hasil penarikan kelurusan tersebut kemudian di input dalam aplikasi *Dips* 7.0 untuk membentuk diagram Roset. Hasil dari diagram Roset digunakan untuk menyimpulkan arah dominan dari sebaran kelurusan di daerah penelitian.

Kelas		Rekomendasi
Kemiringan	Identifikasi Karakteristik Medan	Warna
13 deg – 2 deg	Kawasan yan 💁 atar atau hampir datar, tidak terdapat erosi besar.	Hijau tua- sedang
	Kawasan <mark>dengan</mark> kemiringan lereng landai atau sedikit miring (<i>gently</i>	
2 deg – 4 deg	<i>slope</i>), bila longsor terjadi, tanah, atau material bergerak dengan	Hijau Cerah
	kecepatan rendah.	
	Kawasan dengan semiringan lereng landai sampai curam, bila longsor	
4 deg – 8 deg	terjadi, tanah atau material bergerak dengan kecepatan rendah, rawan	Kuning Cerah
	erosi.	
8 deg 16 deg	Kawasan dengan kemiringan lereng cukup curam (moderately steep),	Oranya
$\delta \log - 10 \log$	rawan longsor, terjadi erosi permukaan.	Orallye
16 dag 25	Kawasan dengan kemiringan lereng curam sampai terjal, sering terjadi	
10 deg – 55	erosi dan gerakan tanah dengan kecepatan yang perlahan-lahan, serta	Merah Cerah
ueg	rawan erosi dan longsor.	
35 deg – 55	Kawasan dengan kemiringan lereng terjal, sering ditemukan singkapan	Merah Tua-
deg	batuan, rawan erosi.	Sedang
> EE dog	Kawasan dengan kemiringan lereng terjal, terdapat singkapan batuan	Ungu Tuo
> 55 deg	dipermukaan, rawan longsor batuan.	Ungu Tua

4. HASIL DAN PEMBAHASAN

Data hasil pengolahan yang diperoleh akan disajikan dalam pembahasan beberapa subtopik utama yaitu peta NDVI, peta LST, Hubungan antara NDVI dan LST, model 3D daerah studi (topografi dan morfometri permukaan), dan peta kelurusan geomorfologi. Hasil dari pengolahan data ini akan dijadikan acuan dalam penentuan area dan kedudukan atau posisi dari prospek geotermal yang ada di Desa Tehoru, Kabupaten Maluku Tengah.

4.1³⁶Vormalized Difference Vegetation Index (*NDVI*)

Klasifikasi nilai NDVI dalam penelitian ini dilakukan untuk menggambarkan kondisi tutupan lahan (*land cover*) di area penelitian. Nilai NDVI diklasifikasikan kedalam empat golongan yang mengacu pada penelitian Mia dkk. (2017), yaitu (1) awan atau objek yang mengandung air (NDVI < 0,00), (2) tanah atau lahan terbuka(0,00 \leq NDVI \leq 0,20), (3) lahan campuran (0,20 \leq NDVI \leq 0,500) dan (4) lahan bervegetasi rapat (NDVI > 0,50). Penelitian ini menggunakan tiga buah data NDVI dari hasil perekaman atau peliputan satelit dalam seri waktu yang berbeda dengan tujuan untuk validasi kualitatif terhadap *trend* tutupan lahan di daerah penelitian. *Trend* tutupan lahan untuk selang waktu yang berbeda dapat memberikan gambaran terkait kondisi perubahan vegetasi yang disebabkan oleh gejala alam atau bukan alam (aktivitas manusia) pada fitur-fitur permukaan yang ada di area penelitian.

Berdasarkan Tabel 3, Desa Tehoru memiliki nilai NDVI yang berkisar dari -0,110 sampai 0,627. Sedangkan rata-rata nilai NDVI di Desa Tehoru berturut-turut dari tahun 2015, 2018 dan 2019 yaitu 0,327, 0,338 dan 0,302. Kondisi ini mengekspresikan bahwa tutupan lahan di Desa Tehoru dominan berada pada lahan campuran. Gambar 4 merupakan tampilan tutupan lahan di Desa Tehoru yang disajikan berdasakan hasil liputan satelit pada tahun 2015 (Gambar 4a), 2018 (Gambar 4b), dan 2019 (Gambar 4c). Tutupan lahan pada daerah Tehoru sebagaimana ketiga hasil liputan satelit

35 ada Gambar 4a, Gambar 4b, dan Gambar 4c

menunjukkan terjadinya perubahan tutupan lahan yang tinggi khususnya di sekitar daerah perumahan warga dan pusat desa. Lokasi perumahan warga tampak jelas berupa lahan campuran hingga lahan terbuka di pesisir dekat pantai. Pada Gambar 4a dan Gambar 4b daerah prospek geotermal Tehoru tampak berada pada daerah dominan vegetasi dengan sedikit lahan campuran pada daerah aliran sungai (DAS) Yapana. Sedangkan pada **Gambar 4c** terlihat bahwa tutupan lahan pada daerah prospek geotermal Tehoru didomasi oleh lahan campuran, tepat di sebelah Selatan dari manifestasi geotermal. Kondisi ini menunjukkan bahwa telah terjadi perubahan tutupan lahan yang berarti (mencolok) di sekitar kawasan manifestasi geotermal dari tahun 2015 ke 2019. Di sebelah barat dan barat daya dari daerah penelitian pada Gambar 4b dan **Gambar 4c** menunjukkan adanya tutupan awan sehingga informasi terkait kondisi vegetasi yang ada di daerah tersebut tidak terekap dengan baik.

Tabel 3	. NDVI	di daerah	penelitian.
---------	--------	-----------	-------------

Data Liputan Satelit	Nilai N	Rata-rata nilai NDVI	
Landsat-8	Minimum	Maksimum	di Area Penelitian
25 Mei 2015	-0,108	0,618	0,327
01 Mei 2018	-0,110	0,627	0,338
30 Desember 2019	-0,071	0,612	0,302

Gambar 4. Klasifikasi tutupan lahan berdasarkan nilai NDVI Desa Tehoru: (a) Liputan satelit 25 Mei 2015, (b) Liputan satelit 01 Mei 2018, dan (c) Liputan satelit 30 Desember 2019.

4.2. Land Surface Temperature (LST)

LST menunjukkan kondisi termal permukaan tanah di daerah penelitian yang diperoleh berdasarkan serangkaian hasil pengolahan data citra Band 10 (TIR-2) Landsat-8. Berdasarkan hasil analisis data suhu permukaan tanah (LST) di Desa Tehoru, diperoleh nilai LST berkisar antara 7,660 °C sampai 33,453 °C. **Tabel 4**, menunjukkan bahwa rata-rata nilai LST Desa Tehoru berdasarkan hasil liputan satelit tahun 2015, 2018, dan 2019 condong konstan yaitu 23,312 °C, 22,255 °C, dan 22,245 °C.

Tabel 4.	LST	di	daerah	penelitian.
----------	-----	----	--------	-------------

Data Liputan Satelit	Nilai LST (°C)		Rata-rata nilai LST
Landsat-8	Minimum	Maksimum	di Area Penelitian (°C)
25 Mei 2015	15,234	31,246	23,312
01 Mei 2018	13,292	28,795	22,255
30 Desember 2019	7,660	33,453	22,245
(a)	(p) and the other state of the other other of the other oth	time of the second seco	() where we

Gambar 5. Peta sebaran LST Desa Tehoru: (a) Liputan satelit 25 Mei 2015, (b) Liputan satelit 01 Mei 2018, dan (c) Liputan satelit 30 Desember 2019.

Berdasarkna hasil analisis Gambar 5 (a, b, dan c) tampak bahwa anomali LST paling terdistribusi merata tinggi di daerah pemukiman atau perumahan warga, dan tentunya lebih tinggi lagi di pusat pemukiman Desa Tehoru. Kondisi anomali LST yang tinggi ini disebabkan oleh lahan terbuka, bagunan, perumahan warga, serta pantulan dari atap rumah warga, dan aktivitas-aktivitas lainnya yang dilakukan oleh manusia. Sedangkan, kondisi anomali LST pada kawasan geotermal Desa Tehoru tampak hanya berupa titik kecil anomali LST sedang di sekitar anomali LST rendah. Anomali LST sedang yang disebabkan oleh aktivitas manifestasi permukaan ini condong lebih nampak di sebelah timur dari titik-titik mata air panas yang diplot. Anomali LST yang lebih dominan ini berasal dari aktivitas panas dari tanah beruap yang ada di sebelah timur dari titik-titik mata air panas. Selain itu, anomali LST dari manifestasi permukaan Desa Tehoru (mata air panas dan tanah beruap) tidak begitu terekap dengan baik, kondisi ini disebabkan oleh tutupan vegetasi di sekitar komplek manifestasi permukaan tersebut. Tutupan lahan di sekitar kawasan manifestasi geotermal Desa Tehoru jika ditelisik berdasarkan data klasifikasi tutupan lahan dari nilai NDVI menunjukkan berada pada kawasan dengan dominan lahan campuran.

4.3. Hubungan antara NDVI dan LST

Berdasakan data pada peta sebaran tutupan lahan (klasifikasi nilai NDVI) dan peta sebaran anomali LST, dapat dikorelasikan hubungan antara keduanya. Korelasi antara nilai NDVI dan anomali LST dilakukan dengan memanfaatkan data hasil liputan satelit yang memiliki presentase tutupan awan terendah yaitu 2,60 (liputan tanggal 01 Mei 2018), bertujuan agar data yang diperoleh dapat merepresentasikan kondisi yang sebenarnya di Analisis lapangan. Hasil menunjukkan hubungan antara nilai NDVI dan anomali LST memiliki pola regresi berupa grafik negatif linear yaitu -11,844, dengan koefisien determinasi $R^2 = 0.672$ atau 67.2 %, (lihat Gambar 6).

Kondisi pada Gambar 6 secara umum menunjukkan terdapat hubungan vang berbanding tebalik antara nilai NDVI (indeks vegetasi) dengan kondisi anomali LST di kawasan geotermal Desa Tehoru, dengan koefisien determinasi hubungan keduanya R^2 yang dapat dipercaya. Berdasarkan Gambar 6, dapat dilihat bahwa tutupan lahan (klasifikasi NDVI) memiliki pengaruh secara langsung terhadap anomali LST di kawasan penelitian. Dimana, daerah dengan nilai NDVI tinggi condong nemiliki nilai LST yang rendah, sedangkan daerah dengan nilai NDVI rendah condong memiliki nilai LST yang tinggi. Kondisi ini mengespresikan keadaan dimana semakin tinggi rapa.², egetasi di suatu kawasan semakin rendah atau kecil suhu maka permukaan tanahnya(Maharani dkk, 2021).

Gambar 6. Grafik Hubungan NDVI dan LST.

4.4. Model 3D Daerah Penelitian

Pemodelan 3D daerah penelitian dikaji dalam dua bentuk tampilan utama yaitu model 3D topografi (Gambar 7a) dan model 3D morfometri permukaan (Gambar 7b). Berdasarkan Gambar 7a, diketahui bahwa topografi di daerah penelitian membentang dari ketinggian 0,1 m dpl sampai 750 m dpl. Topografi Desa Tehoru tampak berupa relief permukaan yang bergelombang dengan sedikit pedataran rendah di wilayah pesisir dan lebih didominasi oleh perbukitan dataran tinggi. Titik-titik manifestasi geotermal berada pada kawasan datar di sekitar lembah DAS Yapana dan diapit oleh perbukitan dataran tinggi.

Berdasarkan **Gambar 7b** nampak tampilan morfometri permukaan daerah penelitian dengan kemiringan lereng dari 0 deg sampai 65 deg. Jika rentang kemiringan lereng ini digolongkan maka daerah penelitian memiliki kemiringan permukaan mulai dari datar (0 deg – 2 deg) sampai kemiringan lereng yang terjal (> 55 deg). Berdasarkan analisis terhadap tampilan 3D morfometri permukaan, daerah penelitian lebih didominasi oleh daerah dengan kemiringan yang terjal (35 deg - 55 deg) dan hanya terdapat sebagian kecil daerah dengan kemiringan permukaan yang datar hingga lereng landai (0 deg - 8 deg) yaitu di daerah kawasan permukiman warga dan sekitar DAS. Kawasan manifestasi geotermal Desa Tehoru pada Gambar 7b nampak berada pada daerah dengan kemiringan datar hingga terjal pada lembah DAS Yapana yang diapit secara langsung oleh perbukitan dengan kemiringan terjal. Kondisi kemiringan lereng di kawasan manifestasi geotermal Desa Tehoru sangatlah unik dan menantang sehingga menjadi sebuah tantangan tersendiri dalam pengamatan langsung proses ataupun eksplorasi geologi dan geofisika terkait keberadaan titik-titik manifestasi permukaan secara langsung.

Gambar 7. (a) Model 3D topografi daerah prospek geotermal Teheoru dan (b) Model 3D morfometri permukaan daerah prospek geotermal Teheoru.

4.5. Kelurusan Geomorfologi

Kelurusan geomorfologi yang dikaji dalam penelitian ini adalah kelurusan lembahan dengan *azimuth* 45°. Kelurusan dalam pengertian ini adalah kenampakan fitur (garis) lurus yang diekspresikan oleh jalur sungai atau lembah yang diperkirakan sebagai sesar atau rekahan. Struktur geologi seperti kelurusan lembahan yang berhasil diidentifikasi dan ditarik dalam penelitian ini adalah sebanyak 64 garis dengan ukuran panjang yang bervariasi (Gambar 8a). Kelurusan ini nampak berupa garis lurus berwarna merah di sepanjang lembahan atau sungai di area penelitian.

Selanjutnya pada **Gambar 8b** nampak overlay peta kelurusan lembahan terhadap peta geologi Daerah Tehoru. Terlihat bahwa hasil overlay menunjukkan adanya korelasi antara garis-garis kelurusan dengan struktur geologi berupa patahan atau sesar (garis lurus hitam) di sekitar kawasan geotermal Desa Tehoru. Garis-garis kelurusan ini nampak berimpit dengan struktur-struktur sesar yang ada. Sebagaimana menurut Herlambang dan Novranza (2016) bahwa kelurusan tersebut dapat mencirikan keberadaan struktur geologi berupa patahan dan kekar (rekahan). Struktur patahan dan rekahan tersebut merupakan zona lemah yang dapat berfungsi sebagai area permeabel dalam proses sirkulasi fluida panas dari bawah permukaan bumi menuju ke permukaan pada suatu sistem geotermal (Iswahyudi-dkk., 2014). Daerah dengan rapat kelurusan yang tinggi merupakan kawasan yang memiliki tingkat permeabilitas yang tinggi (Iqbal & Juliarka, 2019). Hal ini nampak jelas pada peta di Gambar 8a dan Gambar 8b, dimana manifestasi geotermal dan germukaan berupa mata air panas dan tanah beruap bermunculan pada daerah dengan rapat kelurusan yang tinggi.

Rangkuman dari kelurusan-kelurusan yang ada di daerah penelitian kemudian dituangkan dalam diagram roset (lihat **Gambar 9**). Diagram roset ini gunakan untuk melihat orientasi dominan dari sebaran kelurusan di kawasan geotermal Tehoru. Berdasarkan hasil analisis diagram roset yang diperoleh, orientasi kelurusan di kawasan penelitian dominan berarah Barat Dayat-Timur Laut. Arah ini sesuai dan terkonfirmasi jelas dengan orientasi dari struktur geologi berupa sesar mendatar dan rekahan-rekahan yang ada di kawasan geotermal Desa Tehoru.

Gambar 8. (a) Peta kelurusan lembahan dan (b) Peta overlay kelurusan lembahan.

Gambar 9. Diagram roset kelurusan lembahan azimuth 45°.

4.6. Hubungan LST dengan Kondisi Geomorfologi

Berdasarkan hasil analisis data pada peta LST (**Gambar 5**) dan struktur kelurusan geomorfologi pada **Gambar 8**, diperoleh hubungan bahwa pada area dengan rapat kelurusan yang tinggi, muncul beberapa manifestasi geotermal²di permukaan berupa mata air panas dan tanah beruap. Keberadaan mata air panas dan tanah beruap dapat dipantau pada peta LST berupa adanya titik pixel dengan anomali LST yang cenderung lebih kontras dibandingkan area di sekitarnya. Keberadaan anomali LST yang kontras pada area manifestasi geotermal Desa Tehoru tidak sepenuhnya dapat dipantau dengan baik, hanya berupa titik pixel kecil yang akan tampak ketika gambar diperbesar (*zoom in*), hal ini karena adanya pengaruh tutupan lahan pada kawasan tersebut. Kondisi tampilan geomorfologi permukaan pada model topografi (**Gambar 7a**) dan model morfometri permukaan (**Gambar 7b**) menunjukkan bahwa kawasan geotermal Desa Tehoru berada pada kawasan dengan topografi bergelombang dan didominasi oleh kemiringan lereng yang terjal.

Fitur kelurusan geomorfologi pada kawasan geotermal Desa Tehoru tampak begitu rapat (Gambar 8). Eksistensi dari fitur kelurusan, dapat menuniukkan atau mengisyaratkan keterdapatan ¹ruktur geologi yang dapat berupa patahan (sesar) atau rekahan (kekar). Kawasan dengan frekuensi kelurusan yang tinggi merupakan daerah zona lemah, dimana pada kawasan ini dapat menjadi jalur (*path way*) bagi fluida termal menuju ke permukaan, dan membentuk manifestasi geotermal di permukaan seperti mata air panas dan tanah beruap. Keterdapatan struktur geologi permukaan berupa kelurusan geomorfologi vang melintasi atau memotong reservoir secara langsung dapat menyebabkan fluida termal keluar menuju ke permukaan dan membentuk manifestasi geotermal (Sukendar dkk., 2016). Daerah dengan rapat kelurusan geomorfologi yang tinggi mengisyaratkan bahwa daerah tersebut cenderung memiliki tampilan permukaan yang berbukit-bukit dan bertekstur kasar dan banyak memiliki zona lembah yang disebakan oleh aktivitas pensesaran (Herlambang and Novranza, 2016). Kondisi geomorfologi yang kasar tersebut terkonfirmasi pada Gambar 7 yang menunjukkan kondisi permukaan kawasan geotermal Tehoru dengan ciri bergelombang dengan kemiringan lereng yang terjal.

5. KESIMPULAN

Berdasarkan hasil analisis dan interpretasi terkait suhu permukaan tanah dan kondisi geomorfologi di kawasan geotermal Desa Tehoru, maka penelitian ini memiliki kesimpulan sebagai berikut:

a. Anomali LST yang tinggi pada area penelitian dominan berada pada kawasan pemukiman dan lahan terbuka, sedangkan pada kawasan manifestasi geotermal hanya tampak sebagian kecil ketika gambar diperbesar, hal ini dipengaruhi tutupan lahan yang ada pada kawasan tersebut.

- b. Hubungan tutupan lahan (klasifikasi NDVI) dengan anomali LST pada kawasan geotermal Tehoru memiliki pola regresi berupa grafik negatif linear yaitu saling berbanding terbalik.
- c. Manifestasi geoterma³⁴i permukaan seperti mata air panas dan tanah beruap pada kawasan geotermal Tehoru berada pada area datar di lembahan DAS Yapana yang diapit oleh perbukitan dengan kemiringan yang terjal.
- d. Manfestasi permukaan berupa mata air panas dan tanah beruap pada kawasan geotermal Desa Tehoru condong berada pada area dengan rapat kelurusan yang tinggi. Kelurusan ini dapat berupa sesar dan rekahan yang memiliki orientasi dominan berarah Barat-Dayat ke Timur -Laut.

²³CAPAN TERIMA KASIH

Ucapan terima kasih penulis sampaikan kepada pihak USGS-EROS (*U.S Geological Survey – Resources Observation and Science*) ang telah menyediakan data Citra satelit Landsat-8 dan DEM SRTM secara terbuka sehingga dapat membantu penulis dalam mengakses data-data yang dimaksud untuk tujuan penelitian terkait prospek geotermal.³⁸ Desa Tehoru, Kecamatan Tehoru, Kabupaten Maluku Tengah.

DAFTAR PUSTAKA

- Asrafil, Mukaddas, A., Listianti, A., Prawiro, W., & Jamil, R. (2022). Investigasi Kontrol Struktur Geologi Pada Manifestasi Geotermal di Daerah Lompio, Donggala, Sulawesi Tengah. Jurnal GEOSAPTA Vol. 8 No. 1 Januari 2022.
- Azhari, A. P., Maryanto, S., & Rahmansyah, A. (2016). Identification of geological structure and its effect on land surface temperature based on Landsat-8 data on the Blawan geothermal field. *Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital.* 13(1), 1–11.
- Bakruddin, Utama, W., Warnana, D.D. (2016). Penggunaan Citra Satelit Landsat-8 Untuk Analisa Patahan Pada Lapangan Panas Bumi Arjuno Welirang Provinsi Jawa Timur.

Prosiding Seminar Nasional Aplikasi Teknologi Prasarana Wilayah IX (ATPW), Geomatika, pp (I – 37) – (I - 44)

- Danoedoro. (2012). Pengantar Penginderaan jauh digital. Yogyakarta: Penerbit Andi, 2012.
- Faridah, S. A. N., & Krisbiantoro, A. (2014).
 Analisis Distribusi Temperatur Permukaan Tanah Wilayah Potensi Geotermal Menggunakan Teknik Penginderaan Jauh di Gunung Lamongan, Tiris-Probolinggo, Jawa Timur. *Berkala Fisika*, 17(2), 67-72
- Han, L., Liu, Z., Ning, Y., Zhao, Z. (2018).
 Extraction and analysis of geological lineaments combining a DEM and remote sensing images from the northern Baoji loess area. *Advances in Space Research*. 62(9), 2480-2493. https://doi.org/10.1016/j.asr.2018.07.030
- Herlambang, R.F., & Novranza, K.M.S. (2016).
 Pemetaan Kelurusan Menggunakan Remote Sensing dan Korelasinya Terhadap Distribusi Manifestasi Permukaan di Daerah Potensi Geothermal Kepahiang, Bengkulu. *Prosiding Seminar Nasional Fisika (E-Journal) SNF2016*. 3(1), 57-64.
- Iswahyudi, S., Saepuloh, A., Widagdo, A. (2014). Delineating Outflow Zones Using Linear Features Density (LFD) Derived From Landsat Imagery at Paguyangan, Brebes, Central Java. *Proceedings, 3rd International ITB Geothermal Workshop.*
- KESDM. (2017). Potensi Geotermal Indonesia Jilid
 2. Direktorat Geotermal EBTKE. Jakarta: Indonesia, *Buku*, 2((1)), pp. 1–749.
- Maharani, A., Salsanur, V., Hilal, A., Aprilian, Y. (2021). Preliminary Interpretation for Geothermal Potential Area Using DEM And Landsat OLI 8 in Mount Endut. *Bulletin of Scientific Contribution GEOLOGY*. 19 (1), 35-46
- Mia, B. Md., Nishijima, J., Fujimitsu. (2017). Thermal Activity Monitoring of an Active Volcano using Landsat 8/OLI-TIRS Sensor Images: A Case Study at the Aso Volcanic Area in Southwest Japan. *Geosciences*. 7, 118. doi:10.3390/geosciences7040118
- Qin, Q., Zhang, N., Nan, P., and Chai, L. (2011). Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis – A case study in Tengchong, China. *Environment.* 140, 509–518.
- Ramadhan, R.F & Azhari, S.R. (2021). Identifikasi Area Prospek Geotermal Menggunakan

Integrasi Citra Landsat 8 OLI/TIRS dan DEM: Studi Kasus Batu Bini, Kalimantan Selatan. *E-journal Majalah Ilmiah Swara Patra*.11(2):37-50. https://doi.org/10.37525/ sp/2021-2/294

- Siombone, S.H, Jufri, Wiyono, and Maba, M.U.S. (2021). Land Cover, Land Surface Temperature and Geomorphology Structure at Tulehu Geothermal Area, Ambon, Indonesia. *International Journal of Innovative Science, Engineering & Technology. 8*(11),279-291.
- Siombone, S.H., Maryanto, S., Wiyono. (2021). Land Surface Temperature and Geomorphology of Tiris Area, Lamongan Volcano Complex, Probolinggo, East Java, Indonesia. *Environmental and Earth Sciences Research Journal. 8*(2), 65-74. https://doi.org/10.18280/eesrj.080201
- Soenarmo, S.H. (2009). Penginderaan Jauh dan Pengenalan Sistem Informasi Geografis untuk Bidang Ilmu Kebumian. Bandung: Penerbit ITB Bandung.
- Sukendar, P.M., Sasmito, B., Wijaya, A. P. (2016). Analysis of Mount Salak Geothermal Potential Area Distribution with Surface Temperature, Vegetation, and Geomorphology Index. 5(2), pp. 66-75
- Sulaeman, B., Widodo, S., Hermawan, D. (2010). Penyelidikan Terpadu Geologi dan Geokimia Daerah Geotermal Tehoru, Maluku Tengah – Maluku. *Prosiding Hasil Kegiatan Pusat Sumber Daya Geologi.* 30, 495-507.
- Toisuta, Y.M.K., Haryanto, A.D., Hutabarat, J., Gentana, D. (2021). Pendugaan Temperatur Bawah Permukaan pada Manifestasi Geotermal Berdasarkan Analisis Geokimia Air Panas Daerah Kecamatan Tehoru, Kabupaten Maluku Tengah, Provinsi Maluku. *Padjadjaran Geoscience Journal*, 5(2), p. 6.
- USGS. (2016), "Using the USGS Landsat-8 Product", United States Geological Survey (USGS), available at: http://landsat.usgs.gov
- Van Zuidam, R.A. (1985). Aerial Photointerpretation in Terrain Analysis andGeomorphologic Mapping. ITC, Smits Publ., Enschede, The Netherlands.
- Zaini, N., Yanis, Y., Abdullah, F., van der Meer, F., Aufaristama, M. (2022). Exploring the geothermal potential of Peut Sagoe volcano using Landsat 8 OLI/TIRS images. Geothermics, 105 (102499). https://doi.org/10.1016/j.geothermics.2022.1024

99

• 18% Overall Similarity

Top sources found in the following databases:

- 14% Internet database
- Crossref database
- 13% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1	Universitas Brawijaya on 2019-06-11 Submitted works	2%
2	ejurnal.ppsdmmigas.esdm.go.id	2%
3	123dok.com Internet	2%
4	repository.ub.ac.id Internet	1%
5	core.ac.uk Internet	1%
6	es.scribd.com Internet	<1%
7	Universitas Brawijaya on 2019-06-11 Submitted works	<1%
8	ijiset.com Internet	<1%

- 4% Publications database
- Crossref Posted Content database

Universitas Brawijaya on 2019-06-11 Submitted works	<1%
repository.its.ac.id	<1%
docobook.com Internet	<1%
jurnal.unpad.ac.id	<1%
Oxford Brookes University on 2013-02-15 Submitted works	<1%
journal.unpad.ac.id	<1%
Sriwijaya University on 2019-09-09 Submitted works	<1%
Universitas Pendidikan Indonesia on 2022-06-28 Submitted works	<1%
semnaskan-ugm.org Internet	<1%
docplayer.info Internet	<1%
eprints.ums.ac.id	<1%
repository.ipb.ac.id Internet	<1%

Andre Prayogo, Sukir Maryanto, Ahmad Nadhir. "Spatio-Temporal C Crossref	han <1%
ppjp.ulm.ac.id Internet	<1%
media.neliti.com Internet	<1%
Ning Zhang, Qiming Qin, Lian He, Hongbo Jiang. "Remote sensing a Crossref	nd <1%
Universitas Muhammadiyah Surakarta on 2017-10-26 Submitted works	<1%
adoc.pub Internet	<1%
i-rpp.com Internet	<1%
iieta.org Internet	<1%
repository.trisakti.ac.id	<1%
Syiah Kuala University on 2020-01-03 Submitted works	<1%
Syiah Kuala University on 2022-07-21 Submitted works	<1%
Universitas Airlangga on 2019-07-30 Submitted works	<1%

Universitas Pendidikan Indonesia on 2022-08-18 Submitted works	<1%
Universitas Pertamina on 2021-11-14 Submitted works	<1%
digilib.batan.go.id	<1%
ejournal3.undip.ac.id	<1%
id.123dok.com Internet	<1%
id.wikibooks.org	<1%
studentsrepo.um.edu.my Internet	<1%
int-arch-photogramm-remote-sens-spatial-inf-sci.net	<1%
Padjadjaran University on 2021-07-11 Submitted works	<1%
Salman Hamja Siombone, Sukir Maryanto, Wiyono. "Land Surface Tem Crossref	<1%
Universitas Brawijaya on 2018-11-19 Submitted works	<1%
Universitas Brawijaya on 2021-05-08 Submitted works	<1%

45	Yar Johan, Person Pesona Renta, Dewi Purnama, Ali Muqsit, Pinsi Hari Crossref	<1%
46	Sriwijaya University on 2021-01-28 Submitted works	<1%
47	Universitas Diponegoro on 2021-04-12 Submitted works	<1%