INVERSI DATA GEOLISTRIK MENGGUNAKAN PARTICLE SWARM OPTIMIZATION: STUDI KASUS DESA GAYAU
DOI:
https://doi.org/10.23960/jge.v7i2.118Keywords:
Aquifer, Gayau, Particle Swarm Optimization (PSO), VESAbstract
Desa Gayau yang terletak di Kecamatan Padang Cermin, Kabupaten Pesawaran sering mengalami kekeringan air pada saat musim kemarau sehingga perlu dilakukannya pengukuran geolistrik untuk mengidentifikasi keberadaan lapisan akuifer air tanah. Pada penelitian ini konfigurasi yang digunakan adalah Schlumberger dengan panjang bentangan MN/2 sebesar 1, 5, 10, dan 20 meter. Sedangkan panjang bentangan AB/2 sebesar 6 hingga 300 meter. Pada tahapan inversi data VES, kami menggunakan algoritma Particle Swarm Optimization (PSO) untuk memperoleh nilai parameter resistivitas dan ketebalan lapisan. Algoritma ini dipilih karena cepat menuju konvergen dan relatif stabil. Hasil dari inversi ini diperoleh bahwa lapisan akuifer pertama berada pada kedalaman 21.4 - 52.1 meter dengan litologi batupasir berbutir halus dengan sisipan tufa Lapisan akuifer kedua berada pada kedalaman 52.1-70 meter dengan litologi breksi. Pada kedalaman >70 meter diinterpretasikan sebagai akuifer air tanah, namun memiliki debit yang kecil. Hal ini disebabkan karena litologi lapisan berupa breksi, dasit dan lava basal dari Formasi Hulusimpang. Sistem aliran air tanah pada lapisan ini merupakan sistem media pori yang berakibat pada debit rendah dan waktu pengisian kembali lapisan air tanah relatif lama.
References
Bogdonoff, S., & Rubin, J. (2007). The regional greenhouse gas initiative: Taking action in Maine. Environment, 49(2), 9-16.
Gore, A. (2006). An inconvenient truth: The planetary emergency of global warming and what we can do about it. Emmaus, PA: Rodale.
Michaels, P. J., & Balling, R. C., Jr. (2000). The satanic gases: Clearing the air about global warming. Washington, DC: Cato Institute.
Mora, C., & Maya, M. F. (2006). Effect of the rate of temperature increase of the dynamic method on the heat tolerance of fishes. Journal of Thermal Biology, 31, 337-341.
doi: 10.101b/jtherbio.2006.01.055
Adagunodo, T. A., Akinloye, M. K., Sunmonu, L. A., Aizebeokhai, A. P., Oyeyemi, K. D., & Abodunrin, F. O. (2018). Groundwater Exploration in Aaba Residential Area of Akure, Nigeria. Frontiers in Earth Science, 6, 66. https://doi.org/10.3389/feart.2018.00066
Araffa, S. A. S., Alrefaee, H. A., & Nagy, M. (2020). Potential of groundwater occurrence using geoelectrical and magnetic data: A case study from south Wadi Hagul area, the northern part of the Eastern Desert, Egypt. Journal of African Earth Sciences, 172, 103970. https://doi.org/10.1016/j.jafrearsci.2020.103970
Ding, Y., Zhang, W., Yu, L., & Lu, K. (2019). The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis. Energy, Elsevier, 176(C, 582-588.
Katili, J. A. (1975). Evolution of the Southeast Asian Arc Complex. J. Indon. Assoc. Geol.
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of ICNN’95 - International Conference on Neural Networks, 4, 1942–1948 vol.4. https://doi.org/10.1109/ICNN.1995.488968
Laby, D. A., Sungkono, Santosa, B. J., & Bahri, A. S. (2016). RR-PSO: Fast and Robust Algorithm to Invert Rayleigh Waves Dispersion. Contemporary Engineering Sciences, 9, 735–741.
Leggett, W. C., Frank, K. T., & Carscadden, J. E. (1984). Meteorological and Hydrographic Regulation of Year-Class Strength in Capelin (Mallotus villosus). Canadian Journal of Fisheries and Aquatic Sciences, 41(8), 1193–1201. https://doi.org/10.1139/f84-141
Mangga, S. A., Amirudin, Suwarti, T., Gafoer, S., & Sidarto. (1993). Peta Geologi Lembar Tanjung Karang, Sumatera.
MartÃnez, J. L. ., GarcÃa Gonzalo, E., Ãlvarez, J. P. F., Kuzma, H. A., & Pérez, C. O. M. (2010). PSO: A Powerful Algorithm to Solve Geophysical Inverse Problems Application to A 1D-DC Resistivity Case. Journal of Applied Geophysics, 71, 13–25.
MartÃnez, J. L. ., & Gonzalo, E. . (2012). Stochastic Stability and Numerical Analysis of Two Novel Algorithms of The PSO Family: PP-GPSO and RR-GPSO. International Journal on Artificial Intelligence Tools, 21(3).
Mogaji, K. A., & Omobude, O. B. (2017). Modeling of geoelectric parameters for assessing groundwater potentiality in a multifaceted geologic terrain, Ipinsa Southwest, Nigeria – A GIS-based GODT approach. NRIAG Journal of Astronomy and Geophysics, 6(2), 434–451. https://doi.org/https://doi.org/10.1016/j.nrjag.2017.07.001
Mohamad, F., Mardiana, U., Yuniardi, Y., Nur, A. A., & Alfadli, M. K. (2017). Potensi Akuifer Kampus Arjasari Berdasarkan Pengamatan Nilai Tahan Jenis Batuan. Bulletin of Scientific Contribution: GEOLOGY 15 (2), 129–138.
Oseji, J. O., Atakpo, E. A., & Okolie, E. C. (2005). Geoelectric Investigation of The Aquifer Characteristics and Groundwater Potential in Kwale, Delta state, Nigeria. Journal of Applied Sciences & Environmental Management, 9, 157–160.
Reynolds, J. M. (2005). Principles of Applied Geophysics. Cambridge University Press.
Riska, & Satiawan, S. (2019). Inverstigasi Lapisan Akuifer Berdasarkan Data Vertical Electrical Sounding (VES) dan Data Electrical Logging: Studi Kasus Kampus Itera. Bulletin of Scientific Contribution: GEOLOGY, 17(2), 91–100.
Sieh, K., & Natawidjaja, D. (2000). Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105, 28295–28326.
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139167932.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-NonComercial (CC BY-NC).