ANALISIS DEFORMASI PERMUKAAN MENGGUNAKAN METODE DInSAR (Differential Interferometry Synthetic Aperture Radar) PADA STUDI KASUS GEMPABUMI LOMBOK PERIODE AGUSTUS 2018

Authors

  • Muhammad Fikri Azhari Teknik Geofisika Universitas Lampung, Indonesia
  • Karyanto Karyanto Teknik Geofisika Universitas Lampung, Indonesia
  • Syamsurijal Rasimeng Teknik Geofisika Universitas Lampung, Indonesia
  • Bagus Sapto Mulyanto Teknik Geofisika Universitas Lampung, Indonesia

DOI:

https://doi.org/10.23960/jge.v6i2.68

Keywords:

deformation, DInSAR, earthquake, Line of Sight, Lombok

Abstract

Lombok is located on the boundary of active tectonic plates, this is what caused the Lombok Earthquake on August, 2018. DInSAR is a remote sensing technology that utilizes radar satellites to measure the amount of deformation on the surface of the ground with sub-centimeter accuracy. This study aims to obtain the value of surface deformation after the earthquake that struck the Lombok region, in August 5, 2018 Earthquake and the August 19 2018 Earthquake and analyze impact and charateristics of the deformation that occurred in the two earthquakes. The research was carried out based on SAR Sentinel-1 image processing using SNAP Software, Google Earth and ArcGIS 10.3. Deformation that occurred after the Lombok earthquake on August 5, 2018 caused an increase in land level (uplift) on the coast of North Lombok with a deformation value of 15-30 cm to the Line of Sight (LOS). Whereas deformation in the form of subsidence occurs in the City of Mataram and West Lombok with a value of -6 to -16 cm to the Line of Sight (LOS). While the deformation that occurred after the Lombok earthquake on August 19, 2018, caused an increase in land level (uplift) on the East Lombok coast with a deformation value of 18 to 31 cm to the Line of Sight (LOS). Whereas deformation in the form of subsidence occurs in Central Lombok with a value of -3 to -17 cm to the Line of Sight (LOS).

References

Astawa, N., Ilahude, D., & Kusnida, D. (2005). Seismik Stratigrafi Perairan Lombok Lembar Peta 1807, Nusa Tenggara Barat. JURNAL GEOLOGI KELAUTAN, 3(3).

https://doi.org/10.32693/jgk.3.3.2005.127

Bakon, M., Perissin, D., Lazecky, M., & Papco, J. (2014). Infrastructure Non-linear Deformation Monitoring Via Satellite Radar Interferometry. Procedia Technology, 16, 294–300.

https://doi.org/10.1016/j.protcy.2014.10.095

Campbell, J. B., & Wynne, R. H. (2011). Introduction to Remote Sensing (5 ed.). The Guilford Press.

Castañeda, C., Pourthie´, N., & Souyris, J.-C. (2011). Dedicated SAR interferometric analysis to detect subtle deformation in evaporite areas around Zaragoza, NE Spain. International Journal of Remote Sensing, 32(7), 1861–1884.

https://doi.org/10.1080/01431161003631584

Daryono. (2011). Identifikasi Sesar Naik Belakang Busur ( Back Arc Thrust ) Daerah Bali Berdasarkan Seismisitas dan Solusi Bidang Sesar. Artikel Kebumian, Badan Meteorologi Klimatologi dan Geofisika.

European Space Agency (ESA). (2016). Sentinel-1 Satellite Description.

https://sentinel.esa.int/web/sentinel/missions/sentinel-1/satellite-description

Fakhri Islam, L. J., Prasetyo, Y., & Sudarsono, B. (2017). Analisis Penurunan Muka Tanah (Land Subsidence) Kota Semarang Menggunakan Citra Sentinel-1 Berdasarkan Metode Dinsar Pada Perangkat Lunak Snap. Jurnal Geodesi Undip, 6(2).

Fournier, T. J., Pritchard, M. E., & Riddick, S. N. (2010). Duration, magnitude, and frequency of subaerial volcano deformation events: New results from Latin America using InSAR and a global synthesis. Geochemistry, Geophysics, Geosystems, 11(1).

https://doi.org/10.1029/2009GC002558

Goldstein, R. M., & Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21), 4035–4038.

https://doi.org/10.1029/1998GL900033

He, P., Wen, Y., Xu, C., & Chen, Y. (2019). Complete three-dimensional near-field surface displacements from imaging geodesy techniques applied to the 2016 Kumamoto earthquake. Remote Sensing of Environment, 232, 111321. https://doi.org/10.1016/j.rse.2019.111321

Ibrahim, G. (2005). Pengetahuan Seismologi. Badan Meteorologi dan Geofisika.

Monterroso, F., Luca, C. de, Bonano, M., Lanari, R., Manunta, M., Manzo, M., Zinno, I., & Casu, F. (2018). Automatic generation of co-seismic displacement maps by using Sentinel-1 interferometric SAR data. Procedia Computer Science, 138, 332–337.

https://doi.org/10.1016/j.procs.2018.10.047

Pusat Studi Gempa Nasional. (2018). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Permukiman.

Ramdani, F., Setiani, P., & Setiawati, D. A. (2019). Analysis of sequence earthquake of Lombok Island, Indonesia. Progress in Disaster Science, 4, 100046. https://doi.org/10.1016/j.pdisas.2019.100046

Sari, A. R., Handayani, H. H., & Agustan, A. (2014). Penerapan Metode Dinsar untuk Analisa Deformasi Akibat Gempa Bumi dengan Validasi Data Gps Sugar (Studi Kasus: Kepulauan Mentawai, Sumatera Barat). Geoid.

https://doi.org/10.12962/j24423998.v10i1.686

Stein, S., & Wysession, M. (2003). An Introduction to Seismology, Earthquakes and Earth Structure. Blackwell Publishing.

Thomas, A. (2020). Mapping of surface deformation associated with the 5.2 magnitude Stilfontein earthquake of 3 April 2017 using radar interferometry. The Egyptian Journal of Remote Sensing and Space Science.

https://doi.org/10.1016/j.ejrs.2020.01.005

Downloads

Published

2020-07-16

How to Cite

Azhari, M. F., Karyanto, K., Rasimeng, S., & Mulyanto, B. S. (2020). ANALISIS DEFORMASI PERMUKAAN MENGGUNAKAN METODE DInSAR (Differential Interferometry Synthetic Aperture Radar) PADA STUDI KASUS GEMPABUMI LOMBOK PERIODE AGUSTUS 2018. JGE (Jurnal Geofisika Eksplorasi), 6(2), 131–144. https://doi.org/10.23960/jge.v6i2.68

Issue

Section

Articles

Citation Check

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>