GLOBAL OPTIMIZATION VERY FAST SIMULATED ANNEALING INVERSION FOR THE INTERPRETATION OF GROUNDWATER POTENTIAL
DOI:
https://doi.org/10.23960/jge.v8i3.233Keywords:
Global Optimization, Groundwater Potential, Vertical Electrical Sounding, Very Fast Simulated AnnealingAbstract
References
Alarifi, S. S., Abdelrahman, K., & Hazaea, B. Y. (2022). Depicting of groundwater potential in hard rocks of southwestern Saudi Arabia using the vertical electrical sounding approach. Journal of King Saud University - Science, 34(7), 102221. https://doi.org/10.1016/j.jksus.2022.102221
Ammar, A. I., Gomaa, M., & Kamal, K. A. (2021). Applying of SP, DC-Resistivity, DC-TDIP and TDEM soundings in high saline coastal aquifer. Heliyon, 7(7), e07617. https://doi.org/10.1016/j.heliyon.2021.e07617
Bhattacharya, P. K., & Patra, H. P. (1968). Methods in Geochemistry and Geophysics 9: Direct Current Geoelectric Sounding Electric Sounding Principles and Interpretation (1st ed.). Elsevier Publishing Company.
Biswas, A., & Sharma, S. P. (2014). Optimization of self-potential interpretation of 2-D inclined sheet-type structures based on very fast simulated annealing and analysis of ambiguity. Journal of Applied Geophysics, 105, 235–247. https://doi.org/10.1016/j.jappgeo.2014.03.023
Chikabvumbwa, S. R., Sibale, D., Marne, R., Chisale, S. W., & Chisanu, L. (2021). Geophysical investigation of dambo groundwater reserves as sustainable irrigation water sources: case of Linthipe sub-basin. Heliyon, 7(11), e08346. https://doi.org/10.1016/j.heliyon.2021.e08346
Ekinci, Y. L., & Demirci, A. (2008). A Damped Least-Squares Inversion Program for the Interpretation of Schlumberger Sounding Curves. Journal of Applied Sciences, 8(22), 4070–4078. https://doi.org/10.3923/jas.2008.4070.4078
Ghosh, D. K. (1971). The Application of Linear Filter Theory to the Direct Interpretation of Geoelectrical Resistivity Sounding Measurements. Geophysical Prospecting, 19(2), 192–217. https://doi.org/doi.org/10.1111/j.1365-2478.1971.tb00593.x
Guptasarma, D. (1982). optimization of short digital linear filters for increased accuracy. Geophysical Prospecting, 30, 501–514.
Hapsoro, C. A., Srigutomo, W., Purqon, A., Warsa, W., Sutarno, D., & Kagiyama, T. (2021). Global inversion of grounded electric source time-domain electromagnetic data using particle swarm optimization. Journal of Engineering and Technological Sciences, 53(1), 1–27. https://doi.org/10.5614/j.eng.technol.sci.2021.53.1.1
Ingber, L. (1989). Very fast simulated re-annealing. Mathematical and Computer Modelling, 12(8), 967–973.
Ingber, L. (1993). Simulated annealing: practice vs theory. Mathematical and Computer Modelling, 18(11), 29–57.
Joel, E. S., Olasehinde, P. I., Adagunodo, T. A., Omeje, M., Oha, I., Akinyemi, M. L., & Olawole, O. C. (2020). Geo-investigation on groundwater control in some parts of Ogun state using data from Shuttle Radar Topography Mission and vertical electrical soundings. Heliyon, 6(1), e03327. https://doi.org/10.1016/j.heliyon.2020.e03327
Koefoed, O. (1979). Geosounding Principles, 1: Resistivity Sounding Measurements (1st ed.). Elsevier Publishing Company.
Meju, M. A. (1992). An effective ridge regression procedure for resistivity data inversion. Computers & Geosciences, 18(2–3), 99–118. https://doi.org/https://doi.org/10.1016/0098-3004(92)90079-7
Narayan, S., Dusseault, M. B., & Nobes, D. C. (1994). Inversion techniques applied to resistivity inverse problems. Inverse Problem, 10(3), 669.
Özyıldırım, Ö., Demirci, İ., Gündoğdu, N. Y., & Candansayar, M. E. (2020). Two dimensional joint inversion of direct current resistivity and radiomagnetotelluric data based on unstructured mesh. Journal of Applied Geophysics, 172. https://doi.org/10.1016/j.jappgeo.2019.103885
Sen, M. K., & Stoffa, P. L. (2013). Global Optimization Methods in Geophysical Inversion (2ed ed.). Cambridge University Press.
Sharma, S. P. (2012). VFSARES — a very fast simulated annealing FORTRAN program for interpretation of 1-D DC resistivity sounding data from various electrode arrays. Computers and Geosciences, 42, 177–188. https://doi.org/10.1016/j.cageo.2011.08.029
Srigutomo, W., Hapsoro, C. A., Purqon, A., Warsa, Sutarno, D., & Kagiyama, T. (2021). Nonlinear Inversion Using Very Fast Simulated Annealing for Horizontal Electric Dipole Time-Domain Electromagnetic Data. Journal of Electromagnetic Engineering and Science, 21(5), 379–390. https://doi.org/10.26866/jees.2021.5.r.46
Steiner, M., Katona, T., Fellner, J., & Flores Orozco, A. (2022). Quantitative water content estimation in landfills through joint inversion of seismic refraction and electrical resistivity data considering surface conduction. Waste Management, 149, 21–32. https://doi.org/10.1016/j.wasman.2022.05.020
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics (2nd ed.). Cambridge University Press.
Tjokrosaputro, S., Rusmana, E., & Achdan, A. (1993). Peta geologi lembar ambon, maluku. Pusat penelitian dan pengembangan geologi.
Tjong, T., Roodhiyah, L. Y., Nurhasan, & Sutarno, D. (2018). Two Dimensional Finite Element Based Magnetotelluric Inversion using Singular Value Decomposition Method on Transverse Electric Mode. Journal of Physics: Conference Series, 1011(1). https://doi.org/10.1088/1742-6596/1011/1/012042
Wang, Y., Wang, H., Wu, X., Chen, K., Liu, S., & Deng, X. (2021). Near-surface velocity inversion from Rayleigh wave dispersion curves based on a differential evolution simulated annealing algorithm. Artificial Intelligence in Geosciences, 2(September), 35–46. https://doi.org/10.1016/j.aiig.2021.10.001
Wilopo, W., Risanti, Susanto, R., & Putra, D. P. E. (2018). Seawater intrusion assesment and prediction of sea-freshwater interface in Parangtritis coastal aquifer, South of Yogyakarta Special Province. J. Degrade. Min. Land Manage, 8(3), 2709–2718. https://doi.org/doi:10.15243/jdmlm.2021.083.2709
Yan, L., Shen, Q., Lu, H., Wang, H., Fu, X., & Chen, J. (2020). Inversion and uncertainty assessment of ultra-deep azimuthal resistivity logging-while-drilling measurements using particle swarm optimization. Journal of Applied Geophysics, 178, 104059. https://doi.org/10.1016/j.jappgeo.2020.104059
Zaher, M. A., Younis, A., Shaaban, H., & Mohamaden, M. I. I. (2021). Integration of geophysical methods for groundwater exploration: A case study of El Sheikh Marzouq area, Farafra Oasis, Egypt. Egyptian Journal of Aquatic Research, 47(2), 239–244. https://doi.org/10.1016/j.ejar.2021.03.001
Downloads
Additional Files
Published
How to Cite
Issue
Section
Citation Check
License
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-NonComercial (CC BY-NC).