LANDSLIDE CHARACTERISTICS FROM CONCEPTUAL MODELLING OF WEATHERED LAYERS USING SUBSURFACE RESISTIVITY IN SANGON, DIY
DOI:
https://doi.org/10.23960/jge.v11i2.487Keywords:
Geoelectrical, Landslide, Resistivity, Weathered LayerAbstract
The Sangon area is located in Kulonprogo Regency, which physiographically has landforms in the form of hills and mountains. Steep slope angles of the hills and weathered surface rock conditions increase the potential for landslides hazard in the Sangon area. This study aims to identify unstable layers that are prone to landslides in the Sangon, Kokap, and Kulonprogo areas. Information regarding the potential characteristics of landslides can significantly impact reducing losses caused by landslides hazard. Conceptual modelling of weathered layers that have the potential to trigger landslides has been carried out in the research area using resistivity distribution data of subsurface rocks using the geoelectrical method. Geoelectrical data from five measurement lines with a length of 290 m each line with a southeast-northwest orientation can delineate an image of the distribution of weathered layers in the subsurface. Based on the results of two-dimensional (2D) subsurface resistivity inversion modelling, it is known that the weathered layer as soil form andesite rock has a low resistivity value with a range of 7 m – 246 m with a depth of 0 - 12 meters in the subsurface. The distribution of resistivity value of the weathered layer is depicted in the 3D model to determine the distribution of the weathered layer, which is then made into a conceptual model that can describe the characteristics of landslides. The description of the 3D resistivity model of subsurface rocks produces a conceptual model of landslides in the research area, where the potential for landslides that may occur has characteristics in the form of debris flow or translational. The unstable layer volume was 947,000 m³, with a slope gradient ranging from 19% to 35%, with a moderate to steep slope.
References
Bemmelen, Van, R.W. (1949). The Geology of Indonesia. Martinus Nyhoff, The Haque, Nederland.
Giamboro, W. S., Maskuri, F., & Hidayat, W. (2020). Hazardous potential analysis from landslide slip plane delineation based on ground penetrating radar (GPR) methods in Karangsambung, Kebumen, of Central Java. AIP Conference Proceedings, 2245(1).
Hack, R. (2000). Geophysics for Slope Stability. Surveys in Geophysics, 21(4), 423–448.
Highland, L. (2004). Landslide Types and Processes. USGS Report, 15.
Jongmans, D., & Garambois, S. (2007). Geophysical Investigation of Landslides: A Review. Bulletin de la Société géologique de France, 178(2), 101–112.
Loke, M. H. (1999). Electrical Imaging Surveys for Environmental and Engineering Studies. A Practical Guide to 2D and 3D surveys.
Loke, M. H. (2004). Tutorial: 2-D and 3-D Electrical Imaging Surveys.
Lowrie, W. & Fichtner, A. (2020). Fundamentals of Geophysics. Cambridge University Press.
McCann, D. M. & Forster, A. (1990). Reconnaissance Geophysical Methods in Landslide Investigations. Engineering Geology, 29(1), 59–78.
Multi, W., Limehuwey, R., Patty, P. J., Kotarumalos, S. H., Ramadhan, A., & Sukri, M. R. A. (2024). Identifikasi Potensi Bidang Gelincir Menggunakan Metode Geolistrik di Daerah Ambon Maluku. JGE (Jurnal Geofisika Eksplorasi), 10(1), 37–46. https://doi.org/10.23960/jge.v10i1.351
Mulyasari, R., Darmawan, I. G. B., Effendi, D. S., Saputro, S. P., Hesti, H., Hidayatika, A., & Haerudin, N. (2020). Aplikasi Metode Geolistrik Resistivitas Untuk Analisis Bidang Gelincir dan Studi Karakteristik Longsoran di Jalan Raya Suban Bandar Lampung. JGE (Jurnal Geofisika Eksplorasi), 6(1 SE-Articles), 66–76. https://doi.org/10.23960/jge.v6i1.61
Perrone, A., Lapenna, V., & Piscitelli, S. (2014). Electrical Resistivity Tomography Technique for Landslide Investigation: A Review. Earth-Science Reviews, 135, 65–82. https://doi.org/https://doi.org/10.1016/j.earscirev.2014.04.002
Pringgoprawiro, H., & Riyanto, B. 1987. Formasi Andesit Tua Suatu Revisi. PIT IAGI XVI. Bandung.
Rahardjo, W., Sukandarrumidi, & Rosidi, H.M.D. (1995). Peta Geologi Lembar Yogyakarta, Jawa, Edisi ke-2, Pusat Penelitian dan Pengembangan Geologi, Bandung.
Samyn, K., Travelletti, J., Bitri, A., Grandjean, G., & Malet, J.P. (2012). Characterization of A Landslide Geometry Using 3D Seismic Refraction Traveltime Tomography: The La Valette Landslide Case History. Journal of Applied Geophysics, 86, 120–132.
Sulaiman, N., Badros, A. S., Sulaiman, N., Udin, W. S., Shafiee, N. S., & Sulaiman, F. R. (2023). Landslide Investigation Using Electrical Resistivity Imaging (ERI) Method at Kg. Chuchoh Puteri, Kuala Krai, Kelantan, Malaysia. BIO Web of Conferences, 73, 1–8. https://doi.org/10.1051/bioconf/20237304003
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics. Cambridge University Press.
Wicki, A., Lehmann, P., Hauck, C., Seneviratne, S. I., Waldner, P., & Stähli, M. (2020). Assessing The Potential of Soil Moisture Measurements for Regional Landslide Early Warning. Landslides, 17(8), 1881–1896. https://doi.org/10.1007/s10346-020-01400-y
Zakaria, M. F., & Maisarah, S. M. (2020). Identifikasi Bidang Gelincir Pada Daerah Rawan Longsor Desa Srimartani, Yogyakarta. JGE (Jurnal Geofisika Eksplorasi), 5(3), 214–222. https://doi.org/10.23960/jge.v5i3.36
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 JGE (Jurnal Geofisika Eksplorasi)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-NonComercial (CC BY-NC).