IDENTIFIKASI PROSPEK PANAS BUMI RADIOGENIK MENGGUNAKAN LANDSAT-8 DAN GRAVITASI DI DAERAH PERMIS
DOI:
https://doi.org/10.23960/jge.v7i1.115Keywords:
Gravity, Landsat-8, Permis, Radiogenic geothermalAbstract
Indonesia memiliki sistem panas bumi non-vulkanik yang dapat ditemukan di daerah Permis, Pulau Bangka. Diperlukan tahapan awal untuk mengetahui prospek panas bumi radiogenik dengan menggunakan analisis penginderaan jauh berdasarkan data Landsat-8 dan gravitasi. Metode Landsat-8 memanfaatkan perhitungan NDVI, NDWI, dan LST, dari hasil perhitungan tersebut didapatkan 2 lokasi yang memiliki kelembapan tinggi dan suhu permukaan yang relatif tinggi sebesar 28°C yang terletak disekitar manifestasi air panas. Kemudian teknik rasio saluran dan komposit warna semu digunakan untuk mengetahui keberadaan beberapa mineral alterasi hidrotermal seperti OH, lempung, anatase, kovelit, serta sulfur yang dapat menunjukan kemungkinan area outflow. Metode gravitasi bertujuan untuk mengidentifikasi struktur bawah permukaan daerah panas bumi dengan menganalisis pola anomali Bouguer dan derivatif dilanjutkan dengan pemodelan 2D. Hasil penelitian menunjukan bahwa manifestasi daerah Permis dipengaruhi sesar geser dengan arah Barat Laut-Tenggara. Kemudian sumber panas bumi radiogenik di daerah Permis diduga berasal dari batuan granit yang memiliki kandungan radioaktif yang dapat menghasilkan panas. Berdasarkan metode gravitasi dan citra Landsat-8 diperkirakan area prospek panas bumi daerah Permis seluas 2.309 Km2 dengan sebaran ke arah timur dari manifestasi panas bumi Permis.
References
Ahmed, A. (2020). Hydrothermal Alteration Mapping for Geothermal Exploration in Manda-Inakir Area , NW of the Republic of Djibouti. Proceedings World Geothermal Congress 2020, Figure 1, 1–9.
Ali, A., & Pour, A. (2014). Lithological mapping and hydrothermal alteration using Landsat 8 data: a case study in ariab mining district, red sea hills, Sudan. International Journal of Basic and Applied Sciences, 3(3). https://doi.org/10.14419/ijbas.v3i3.2821
Anandababu, D., Purushothaman, B. M., & Suresh Babu, S. (2018). Estimation of Land Surface Temperature using LANDSAT 8 Data. International Journal of Advance Research, 4(2), 177–186. www.IJARIIT.com
Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors, 2016. https://doi.org/10.1155/2016/1480307
Blakely, R. J. (1996). Potential Theory in Gravity and Magnetic. In Cambridge University Press.
Browne, P. R. L. (1970). Hydrothermal alteration as an aid in investigating geothermal fields. Geothermics. https://doi.org/10.1016/0375-6505(70)90057-X
Drisya, J., Kumar, D. S., & Roshni, T. (2018). Spatiotemporal variability of soil moisture and drought estimation using a distributed hydrological model. In Integrating Disaster Science and Management: Global Case Studies in Mitigation and Recovery. https://doi.org/10.1016/B978-0-12-812056-9.00027-0
Franto, F. (2015). Interpretasi Struktur Geologi Regional Pulau Bangka Berdasarkan Citra Shuttle Radar Topography Mission (SRTM). PROMINE, Vol 3 No 1 (2015): PROMINE. http://journal.ubb.ac.id/index.php/promine/article/view/85
Frutuoso, R. M. D. C. (2015). Mapping hydrothermal gold mineralization using Landsat 8 data . A case of study in Chaves license , Portugal. Dissertação de Mestrado. https://sigarra.up.pt/fcup/pt/pub_geral.pub_view?pi_pub_base_id=127594
Gao, B. C. (1996). NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment. https://doi.org/10.1016/S0034-4257(96)00067-3
Gonzalez, L. M. R., Aufaristama, M., Jónsdóttir, I., Höskuldsson, Ã., Póroarson, P., Proietti, N. M., Kraft, G., & McQuilkin, J. (2019). Remote sensing of surface Hydrothermal Alteration, identification of Minerals and Thermal anomalies at Sveifluháls-KrýsuvÃk high-temperature Geothermal field, SW Iceland. IOP Conference Series: Earth and Environmental Science, 254(1). https://doi.org/10.1088/1755-1315/254/1/012005
Hafidah, A. D., Daud, Y., & Usman, A. (2019). Reservoir Identification Based on Gravity Method at “aUN†Geothermal Field. E3S Web of Conferences, 125(201 9), 0–5. https://doi.org/10.1051/e3sconf/201912514008
Huenges, E. (2010). Geothermal Energy Systems: Exploration, Development, and Utilization. In Wileyâ€VCH.
Kasbani, K. (2009). Tipe Sistem Panas Bumi Di Indonesia Dan Estimasi Potensi Energinya. Buletin Sumber Daya Geologi, Vol 4, No 3 (2009): Buletin Sumber Daya Geologi, 23–30. http://buletinsdg. geologi.esdm.go.id/index.php/bsdg/article/view/BSDG_VOL_4_NO_3_2009_3
Kaufman, H. (1988). Mineral Exploration along the Agaba-Levant Structure by Use of TM-Data Concepts, Processing and Results. International Journal of Remote Sensing, 9, 1630–1658.
Lowrie, W. (2007). Fundamentals of Geophysiscs. In Journal of Materials Processing Technology (Second Edi). Cambrodge University Press.
Margono. (1995). Peta Geologi Lembar Bangka Selatan. Badan Geologi. Bandung
Noorollahi, Y., Highway, Y. E., & Ghods, S. (2005). Application of Gis and Remote Sensing in Exploration and Environmental Management of Námafjall Geothermal Area , N-Iceland. In Training (Issue 1).
Padmawidjaja, T. (2013). Deliniasi Endapan Timah Berdasarkan Analisis Anomali Gayaberat Di Daerah Bangka Selatan. Buletin Sumber Daya Geologi, Vol 8, No 3 (2013): Buletin Sumber Daya Geologi, 130–140. http://buletinsdg.geologi.esdm.go.id/index.php/bsdg/article/view/BSDG_VOL_8_NO_3_2013_4
Pettijohn, F.J., Potter, P. E., & Siever, R. (1975). Sand and Sandstone. Geological Magazine, 112(2), 203–204. https://doi.org/DOI: 10.1017/S0016756800045945
Pour, A. B., & Hashim, M. (2015). Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. Journal of Taibah University for Science, 9(2), 155–166. https://doi.org/10.1016/j.jtusci.2014.11.008
Purwoto, E., Rezky, Y., & Simarmata, R. S. L. (2015). Survei Aliran Panas (Heat Flow) Daerah Panas Bumi Permis Kabupaten Bangka Selatan, Provinsi Bangka Belitung. Pusat Sumber Daya Geologi.
Reynolds, J. (2011). An Introduction to Applied and Environmental Geophysics. John Willey & Sons.
Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14(3–4). https://doi.org/10.1016/S0169-1368(99)00007-4
Sarkowi, M. (2010). Identifikasi struktur daerah panasbumi ulubelu berdasarkan analisa data svd anomali bouguer. J. Sains MIPA, 16(2), 111–118.
Setiawan, D.I.A.L. (2016). Karakteristik Geokimia Granit Dan Implikasinya Terhadap Sistem Panas Bumi Daerah Permis, Kabupaten Bangka Selatan Provinsi Bangka Belitung. Buletin Sumber Daya Geologi, Vol 11, No 1 (2016): Buletin Sumber Daya Geologi, 1–13. http://buletinsdg.geologi.esdm.go.id/index.php/bsdg/article/view/BSDG_VOL_11_NO_1_2016_1
Setyawan, A., Yudianto, H., Nishijima, J., & Saibi, H. (2015). Gradient analysis of gravity and magnetic data beneath Gedongsongo geothermal manifestations, Ungaran, Indonesia.
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics. Cambridge University Press.
USGS. (2015). Landsat-8 (L8) Data Users Handbook. Version.
Widianto, E. D. (2008). Penentuan Konfigurasi Struktur Batuan Dasar Dan Jenis Cekungan Dengan Data Gayaberat Serta Implikasinya Pada Target Eksplorasi Minyak Dan Gas Bumi Di Pulau Jawa.
Witter, J. B., Trainor-Guitton, W. J., & Siler, D. L. (2019). Uncertainty and risk evaluation during the exploration stage of geothermal development: A review. Geothermics, 78(December 2018), 233–242. https://doi.org/10.1016/j.geothermics.2018.12.011
Zeng, H., Zhang, Q., & Liu, J. (1994). Location of secondary faults from crossâ€correlation of the second vertical derivative of gravity anomalies. Geophysical Prospecting, 42(8), 841–854. https://doi.org/10.1111/j.1365-2478.1994.tb00244.x
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-NonComercial (CC BY-NC).