GLOBAL OPTIMIZATION VERY FAST SIMULATED ANNEALING INVERSION FOR THE INTERPRETATION OF GROUNDWATER POTENTIAL

Authors

  • Samsul Bahri Departement of Geophysical Engineering, University of Pattimura, Indonesia
  • Sanny Virginia Aponno Departement of Geological Engineering, University of Pattimura, Indonesia
  • Zulfiah Zulfiah Departement of Geological Engineering, University of Pattimura, Indonesia

DOI:

https://doi.org/10.23960/jge.v8i3.233

Keywords:

Global Optimization, Groundwater Potential, Vertical Electrical Sounding, Very Fast Simulated Annealing

Abstract

This study examines the inversion modelling of one-dimensional Schlumberger configuration resistivity data using the Very Fast Simulated Annealing (VFSA). Detailed identification and mapping of aquifer conditions is very important for the sustainable development of groundwater resources in an area. Vertical electrical sounding (VES) and surface electrical resistivity surveys have proven very useful for studying groundwater due to their simplicity and cost effectiveness. Global optimization inversion method also provides an inversion solution that is not expected to be trapped in a local minimum solution, so that it will get results that are closer to the actual situation. The VFSA method is inspired by phenomena in metallurgy related to the formation of crystals in materials caused by thermodynamic processes. This inversion scheme was tested initially with free noise synthetic data and with noise 5%. Furthermore, the program is applied to field data that has been measured in Ambon City, Maluku, Indonesia. The results of the VFSA inversion on field data obtained four layers consisting of top soil (141.2 ± 0,61 m) with a thickness of 1.43 m, andesite breccia rock (355.90 ± 0.46 m) with a thickness of 4 m, lapilli tuff (93.40 ± 0.31 m) with 30 m thick, then the last is the coarse tuff layer (34.30 ± 0.15 m) which is estimated as an aquifer.

References

Alarifi, S. S., Abdelrahman, K., & Hazaea, B. Y. (2022). Depicting of groundwater potential in hard rocks of southwestern Saudi Arabia using the vertical electrical sounding approach. Journal of King Saud University - Science, 34(7), 102221. https://doi.org/10.1016/j.jksus.2022.102221

Ammar, A. I., Gomaa, M., & Kamal, K. A. (2021). Applying of SP, DC-Resistivity, DC-TDIP and TDEM soundings in high saline coastal aquifer. Heliyon, 7(7), e07617. https://doi.org/10.1016/j.heliyon.2021.e07617

Bhattacharya, P. K., & Patra, H. P. (1968). Methods in Geochemistry and Geophysics 9: Direct Current Geoelectric Sounding Electric Sounding Principles and Interpretation (1st ed.). Elsevier Publishing Company.

Biswas, A., & Sharma, S. P. (2014). Optimization of self-potential interpretation of 2-D inclined sheet-type structures based on very fast simulated annealing and analysis of ambiguity. Journal of Applied Geophysics, 105, 235–247. https://doi.org/10.1016/j.jappgeo.2014.03.023

Chikabvumbwa, S. R., Sibale, D., Marne, R., Chisale, S. W., & Chisanu, L. (2021). Geophysical investigation of dambo groundwater reserves as sustainable irrigation water sources: case of Linthipe sub-basin. Heliyon, 7(11), e08346. https://doi.org/10.1016/j.heliyon.2021.e08346

Ekinci, Y. L., & Demirci, A. (2008). A Damped Least-Squares Inversion Program for the Interpretation of Schlumberger Sounding Curves. Journal of Applied Sciences, 8(22), 4070–4078. https://doi.org/10.3923/jas.2008.4070.4078

Ghosh, D. K. (1971). The Application of Linear Filter Theory to the Direct Interpretation of Geoelectrical Resistivity Sounding Measurements. Geophysical Prospecting, 19(2), 192–217. https://doi.org/doi.org/10.1111/j.1365-2478.1971.tb00593.x

Guptasarma, D. (1982). optimization of short digital linear filters for increased accuracy. Geophysical Prospecting, 30, 501–514.

Hapsoro, C. A., Srigutomo, W., Purqon, A., Warsa, W., Sutarno, D., & Kagiyama, T. (2021). Global inversion of grounded electric source time-domain electromagnetic data using particle swarm optimization. Journal of Engineering and Technological Sciences, 53(1), 1–27. https://doi.org/10.5614/j.eng.technol.sci.2021.53.1.1

Ingber, L. (1989). Very fast simulated re-annealing. Mathematical and Computer Modelling, 12(8), 967–973.

Ingber, L. (1993). Simulated annealing: practice vs theory. Mathematical and Computer Modelling, 18(11), 29–57.

Joel, E. S., Olasehinde, P. I., Adagunodo, T. A., Omeje, M., Oha, I., Akinyemi, M. L., & Olawole, O. C. (2020). Geo-investigation on groundwater control in some parts of Ogun state using data from Shuttle Radar Topography Mission and vertical electrical soundings. Heliyon, 6(1), e03327. https://doi.org/10.1016/j.heliyon.2020.e03327

Koefoed, O. (1979). Geosounding Principles, 1: Resistivity Sounding Measurements (1st ed.). Elsevier Publishing Company.

Meju, M. A. (1992). An effective ridge regression procedure for resistivity data inversion. Computers & Geosciences, 18(2–3), 99–118. https://doi.org/https://doi.org/10.1016/0098-3004(92)90079-7

Narayan, S., Dusseault, M. B., & Nobes, D. C. (1994). Inversion techniques applied to resistivity inverse problems. Inverse Problem, 10(3), 669.

Özyıldırım, Ö., Demirci, İ., Gündoğdu, N. Y., & Candansayar, M. E. (2020). Two dimensional joint inversion of direct current resistivity and radiomagnetotelluric data based on unstructured mesh. Journal of Applied Geophysics, 172. https://doi.org/10.1016/j.jappgeo.2019.103885

Sen, M. K., & Stoffa, P. L. (2013). Global Optimization Methods in Geophysical Inversion (2ed ed.). Cambridge University Press.

Sharma, S. P. (2012). VFSARES — a very fast simulated annealing FORTRAN program for interpretation of 1-D DC resistivity sounding data from various electrode arrays. Computers and Geosciences, 42, 177–188. https://doi.org/10.1016/j.cageo.2011.08.029

Srigutomo, W., Hapsoro, C. A., Purqon, A., Warsa, Sutarno, D., & Kagiyama, T. (2021). Nonlinear Inversion Using Very Fast Simulated Annealing for Horizontal Electric Dipole Time-Domain Electromagnetic Data. Journal of Electromagnetic Engineering and Science, 21(5), 379–390. https://doi.org/10.26866/jees.2021.5.r.46

Steiner, M., Katona, T., Fellner, J., & Flores Orozco, A. (2022). Quantitative water content estimation in landfills through joint inversion of seismic refraction and electrical resistivity data considering surface conduction. Waste Management, 149, 21–32. https://doi.org/10.1016/j.wasman.2022.05.020

Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics (2nd ed.). Cambridge University Press.

Tjokrosaputro, S., Rusmana, E., & Achdan, A. (1993). Peta geologi lembar ambon, maluku. Pusat penelitian dan pengembangan geologi.

Tjong, T., Roodhiyah, L. Y., Nurhasan, & Sutarno, D. (2018). Two Dimensional Finite Element Based Magnetotelluric Inversion using Singular Value Decomposition Method on Transverse Electric Mode. Journal of Physics: Conference Series, 1011(1). https://doi.org/10.1088/1742-6596/1011/1/012042

Wang, Y., Wang, H., Wu, X., Chen, K., Liu, S., & Deng, X. (2021). Near-surface velocity inversion from Rayleigh wave dispersion curves based on a differential evolution simulated annealing algorithm. Artificial Intelligence in Geosciences, 2(September), 35–46. https://doi.org/10.1016/j.aiig.2021.10.001

Wilopo, W., Risanti, Susanto, R., & Putra, D. P. E. (2018). Seawater intrusion assesment and prediction of sea-freshwater interface in Parangtritis coastal aquifer, South of Yogyakarta Special Province. J. Degrade. Min. Land Manage, 8(3), 2709–2718. https://doi.org/doi:10.15243/jdmlm.2021.083.2709

Yan, L., Shen, Q., Lu, H., Wang, H., Fu, X., & Chen, J. (2020). Inversion and uncertainty assessment of ultra-deep azimuthal resistivity logging-while-drilling measurements using particle swarm optimization. Journal of Applied Geophysics, 178, 104059. https://doi.org/10.1016/j.jappgeo.2020.104059

Zaher, M. A., Younis, A., Shaaban, H., & Mohamaden, M. I. I. (2021). Integration of geophysical methods for groundwater exploration: A case study of El Sheikh Marzouq area, Farafra Oasis, Egypt. Egyptian Journal of Aquatic Research, 47(2), 239–244. https://doi.org/10.1016/j.ejar.2021.03.001

Downloads

Published

2022-11-29

How to Cite

Bahri, S., Aponno, S. V., & Zulfiah, Z. (2022). GLOBAL OPTIMIZATION VERY FAST SIMULATED ANNEALING INVERSION FOR THE INTERPRETATION OF GROUNDWATER POTENTIAL. JGE (Jurnal Geofisika Eksplorasi), 8(3), 225–236. https://doi.org/10.23960/jge.v8i3.233

Issue

Section

Articles

Citation Check

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.