LAST GLACIAL MAXIMUM – HOLOCENE RAINFALL SHIFTS IN THE WESTERN SAVU STRAIT BASED ON GEOCHEMICAL PROXIES

Authors

  • Ryan Dwi Wahyu Ardi Geological Engineering Department, Faculty of Engineering, Universitas Jenderal Soedirman, Indonesia
  • Aswan Aswan Geological Engineering Study Program, Institut Teknologi Bandung, Indonesia
  • Khoiril Anwar Maryunani Geological Engineering Study Program, Institut Teknologi Bandung, Indonesia
  • Eko Yulianto Research Center for Geological Disaster, National Research and Innovation Agency, Indonesia
  • Purna Sulastya Putra Research Center for Geological Disaster, National Research and Innovation Agency, Indonesia
  • Septriono Hari Nugroho Research Center for Geological Disaster, National Research and Innovation Agency, Indonesia
  • Efrilia Mahdilah Nurhidayah Geological Engineering Department, Faculty of Engineering, Universitas Jenderal Soedirman, Indonesia

DOI:

https://doi.org/10.23960/jge.v11i2.493

Keywords:

Australian–Indonesian Monsoon, Glacial–interglacial climate change, Indo-Pacific Warm Pool, Rainfall reconstruction, XRF elemental ratios

Abstract

The Indo-Pacific Warm Pool significantly influences global atmospheric circulation, with tropical rainfall patterns highly sensitive to glacial–interglacial climate changes. During the Last Glacial Maximum (LGM), approximately 26,500 years before present, lower insolation, expanded ice sheets, and reduced sea levels weakened the Australian–Indonesian Monsoon (AIM) due to a southward shift of the Intertropical Convergence Zone (ITCZ). In contrast, the Holocene period experienced intensified monsoon systems and increased precipitation. However, high-resolution hydroclimate reconstructions from the western Savu Strait remain scarce. This study reconstructs rainfall variability from the LGM to the Holocene using geochemical proxies from sediment core ST10 (at 1 cm interval), located in the western Savu Strait. Three elemental ratios (Ti/Ca, K/Ca, and Rb/Sr) from X-ray fluorescence (XRF) core scanning were used to indicate terrigenous input, chemical weathering, and fluvial discharge. The age model was established using radiocarbon dating and stable isotope alignment with the Greenland ice core δ¹⁸O record. Log-transformed elemental ratios reveal four intervals of increased rainfall: the LGM, Heinrich Event 1 (HE1), Younger Dryas to Early Holocene, and the Late Holocene. These periods are characterized by elevated Ti/Ca, K/Ca, and Rb/Sr values, suggesting enhanced monsoonal rainfall and continental runoff. Conversely, lower proxy values during the Early Deglaciation, Bølling–Allerød, and Mid-Holocene indicate drier climatic conditions. These patterns align with regional proxy records from southwest Sumba and the Timor Sea, confirming the reliability of elemental ratios in reconstructing past hydroclimate variability. This study provides the first continuous record of rainfall shifts in the western Savu Strait from the LGM to Holocene and contributes to understanding long-term monsoon dynamics in southeastern Indonesia, highlighting the complex response of tropical hydroclimate to global climate forcing.

References

Andersen, K.K., Bigler, M., Buchardt, S.L., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Fischer, H., Goto-Azuma, K., Hansson, M.E., Heinemeier, J., Johnsen, S.J., Larsen, L.B., Muscheler, R. (2007). Greenland Ice Core Chronology 2005 (GICC05) and 20 Year Means of Oxygen Isotope Data From Ice Core NGRIP. AGU Fall Meeting Abstracts.

Ardi, R.D.W., Aswan, Maryunani, K.A., Yulianto, E., Putra, P.S., Nugroho, S.H., & Istiana. (2020). Last Deglaciation—Holocene Australian-Indonesian Monsoon Rainfall Changes Off Southwest Sumba, Indonesia. Atmosphere, 11(9), 932. https://doi.org/10.3390/ atmos11090932.

Arz, H.W., Lamy, F., Ganopolski, A., Nowaczyk, N., & Pätzold, J. (2007). Dominant Northern Hemisphere Climate Control Over Millennial-Scale Glacial Sea-Level Variability. Quaternary Science Reviews, 26(3–4), 312–321. https://doi.org/10.1016/j.quascirev. 2006.07.016.

Ayliffe, L.K., Gagan, M.K., Zhao, J., Drysdale, R. N., Hellstrom, J.C., Hantoro, W.S., Griffiths, M.L., Scott-gagan, H., Pierre, E. S., Cowley, J. A., & Suwargadi, B.W. (2013). Rapid Interhemispheric Climate Links Via The Australasian Monsoon During The Last Deglaciation. Nature Communications, 4 (May), 1–6. https://doi.org/10.1038/ ncomms 3908.

Bayhaqi, A., Lenn, Y.D., Surinati, D., Polton, J., Nur, M., Corvianawatie, C., & Purwandana, A. (2019). The Variability of Indonesian Throughflow in Sumba Strait and Its Linkage to the Climate Events. American Journal of Applied Sciences, 16(4), 118–133. https://doi.org/10.3844/ajassp.2019.118.133.

Berger, A.L. (1978). Long-Term Variations of Daily Insolation and Quaternary Climatic Changes. Journal of the Atmospheric Sciences, 35(12), 2362–2367. https://doi.org/ 10.1175/1520-0469(1978)035<2362: LTVODI>2.0.CO;2

Bird, M.I., Taylor, D., & Hunt, C. (2005). Palaeoenvironments of Insular Southeast Asia During The Last Glacial Period: A Savanna Corridor in Sundaland? Quaternary Science Reviews, 24(20–21), 2228–2242. https://doi.org/10.1016/j.quascirev.2005.04.004

Blaauw, M. (2010). Methods and Code For ‘Classical’ Age-Modelling of Radiocarbon Sequences. Quaternary Geochronology, 5(5), 512–518. https://doi.org/10.1016/j.quageo. 2010.01.002>.

Blaauw, M. & Christen, J.A. (2011). Flexible Paleoclimate Age-Depth Models Using An Autoregressive Gamma Process. Bayesian Analysis, 6(3), 457–474. https://doi.org/ 10.1214/11-BA618

Broccoli, A.J., Dahl, K.A., & Stouffer, R.J. (2006). Response of the ITCZ to Northern Hemisphere Cooling. Geophysical Research Letters, 33(1). https://doi.org/10.1029/ 2005GL024546.

Chen, J., An, Z., & Head, J. (1999). Variation of Rb/Sr Ratios in The Loess-Paleosol Sequences of Central China During The Last 130,000 Years and Their Implications For Monsoon Paleoclimatology. Quaternary Research, 51(3), 215–219. https://doi.org/10.1006/qres.1999.2038

Chen, L., Shen, H., Jia, Y., Wu, J., Li, X., Wei, L., & Wang, P. (2008). Environmental Change Inferred From Rb and Sr of Lacustrine Sediments in Huangqihai Lake, Inner Mongolia. Journal of Geographical Sciences, 18(3), 373–384. https://doi.org/10.1007/ s11442-008-0373-1.

Cui, T., Zhang, X., Li, Q., Wei, R., Li, X. & Wang, Y., (2025). Hydroclimate Variability in The Tropical Indo-Pacific During The Last Glacial Cycle. Quaternary Science Reviews, 330, p.108125. https://doi.org/10.1016/ j.quascirev.2024.108125

Denniston, R.F., Ummenhofer, C.C., Wanamaker, A.D., Lachniet, M.S., Villarini, G., Asmerom, Y., Polyak, V.J., Passaro, K.J., Cugley, J., Woods, D., & Humphreys, W.F. (2016). Expansion and Contraction of The Indo-Pacific Tropical Rain Belt Over The Last Three Millennia. Scientific Reports, 6(1), 34485. https://doi.org/ 10.1038/srep34485

Di Nezio, P. N., Timmermann, A., Tierney, J. E., Jin, F., Otto‐Bliesner, B., Rosenbloom, N., Mapes, B., Neale, R., Ivanovic, R. F., & Montenegro, A. (2016). The Climate Response of The Indo‐Pacific Warm Pool to Glacial Sea Level. Paleoceanography, 31(6), 866–894. https://doi.org/10.1002/2015PA002890

EPICA Community Members (2006). One-to-One Coupling of Glacial Climate Variability in Greenland and Antarctica. Nature, 444(7116), 195–198. https://doi.org/ 10.1038/ nature05301

Feng, M., Meyers, G., Pearce, A., & Wijffels, S. (2003). Annual and Interannual Variations of The Leeuwin Current at 32°S. Journal of Geophysical Research: Oceans, 108(C11). https://doi.org/10.1029/2002JC001763

Feng, M., Zhang, N., Liu, Q., & Wijffels, S. (2018). The Indonesian Throughflow, Its Variability and Centennial Change. Geoscience Letters, 5(1). https://doi.org/10.1186/s40562-018-0102-2

Gebregiorgis, D., Giosan, L., Hathorne, E. C., Anand, P., Nilsson‐Kerr, K., Plass, A., Lückge, A., Clemens, S. C., & Frank, M. (2020). What Can We Learn From X‐Ray Fluorescence Core Scanning Data? A Paleomonsoon Case Study. Geochemistry, Geophysics, Geosystems, 21(2), 1–17. https://doi.org/10.1029/ 2019GC008414

Gordon, A. (2005). Oceanography of The Indonesian Seas and Their Throughflow. Oceanography, 18(4), 14–27. https://doi.org/10.5670/oceanog.2005.01

Griffiths, M. L., Drysdale, R. N., Gagan, M. K., Zhao, J. X., Ayliffe, L. K., Hellstrom, J. C., Hantoro, W. S., Frisia, S., Feng, Y. X., Cartwright, I., Pierre, E. S., Fischer, M. J., & Suwargadi, B. W. (2009). Increasing Australian-Indonesian Monsoon Rainfall Linked To Early Holocene Sea-Level Rise. Nature Geoscience, 2(9), 636–639. https://doi.org/10.1038/ngeo605

Hanebuth, T., Stattegger, K., & Grootes, P. M. (2000). Rapid Flooding of the Sunda Shelf: A Late-Glacial Sea-Level Record. Science, 288(5468), 1033–1035. https://doi.org/ 10.1126/science.288.5468.1033

Hendrizan, M., Kuhnt, W., & Holbourn, A. (2017). Variability of Indonesian Throughflow and Borneo Runoff During the Last 14 kyr. Paleoceanography, 32(10), 1054–1069. https://doi.org/10.1002/2016PA003030

Hendrizan, M., Kuhnt, W., Holbourn, A., Cahyarini, S. Y., & Ningsih, N. S. (2023). Kalimantan Hydroclimate Variability Since The Last Glacial Period. International Journal of Earth Sciences, 112(2), 615–629. https://doi.org/10.1007/s00531-022-02266-2

Holbourn, A., Kuhnt, W., Kawamura, H., Jian, Z., Grootes, P., Erlenkeuser, H., & Xu, J. (2005). Orbitally Paced Paleoproductivity Variations in The Timor Sea and Indonesian Throughflow Variability During The Last 460 kyr. Paleoceanography, 20(3), 1–18. https://doi.org/10.1029/2004PA001094

Kuhnt, W., Holbourn, A., Xu, J., Opdyke, B., De Deckker, P., Röhl, U., & Mudelsee, M. (2015). Southern Hemisphere Control on Australian Monsoon Variability During The Late Deglaciation and Holocene. Nature Communications, 6(1), 1–7. https://doi.org/10.1038/ncomms6916

Lim, S. Y., Marzin, C., Xavier, P., Chang, C. P., & Timbal, B. (2017). Impacts of Boreal Winter Monsoon Cold Surges and The Interaction With MJO on Southeast Asia Rainfall. Journal of Climate, 30(11), 4267–4281. https://doi.org/10.1175/JCLI-D-16-0546.1

Linsley, B. K., Rosenthal, Y., & Oppo, D. W. (2010). Holocene Evolution of The Indonesian Throughflow and The Western Pacific Warm Pool. Nature Geoscience, 3(8), 578–583. https://doi.org/10.1038/ngeo920

Lowry, D.P. & McGowan, H.A., 2024. Intensification of Monsoonal Precipitation in The Tropical Western Pacific During The Early Holocene. Earth and Planetary Science Letters, 617, p.118267. https://doi.org/10.1016/j.epsl.2023.118267

McGee, D., Donohoe, A., Marshall, J., & Ferreira, D. (2014). Changes in ITCZ Location and Cross-Equatorial Heat Transport at The Last Glacial Maximum, Heinrich Stadial 1, and The Mid-Holocene. Earth and Planetary Science Letters, 390, 69–79. https://doi.org/10.1016/j.epsl.2013.12.043

Miriyala, P., Sukumaran, N. P., Nath, B. N., Ramamurty, P. B., Sijinkumar, A. V., Vijayagopal, B., Ramaswamy, V., & Sebastian, T. (2017). Increased Chemical Weathering During The Deglacial To Mid-Holocene Summer Monsoon Intensification. Scientific Reports, 7(1), 44310. https://doi.org/10.1038/srep44310

Mohtadi, M., Oppo, D. W., Steinke, S., Stuut, J. B. W., De Pol-Holz, R., Hebbeln, D., & Lückge, A. (2011). Glacial to Holocene Swings of The Australian-Indonesian Monsoon. Nature Geoscience, 4(8), 540–544. https://doi.org/10.1038/ngeo1209

Mohtadi, M., Prange, M., Schefuß, E., & Jennerjahn, T. C. (2017). Late Holocene Slowdown of The Indian Ocean Walker Circulation. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-00855-3

Nesbitt, H. W., Markovics, G., & Price, R. C. (1980). Chemical Processes Affecting Alkalis and Alkaline Earths During Continental Weathering. Geochimica et Cosmochimica Acta, 44(11), 1659–1666. https://doi.org/10.1016/0016-7037(80)90218-5

Partin, J. W., Cobb, K. M., Adkins, J. F., Clark, B., & Fernandez, D. P. (2007). Millennial-scale Trends in West Pacific Warm Pool Hydrology Since The Last Glacial Maximum. Nature, 449(7161), 452–455. https://doi.org/10.1038/nature06164

Qu, T., Du, Y., Strachan, J., Meyers, G., & Slingo, J. (2005). Sea Surface Temperature and Its Variability in the Indonesian Region. Oceanography, 18(4), 50–61. https://doi.org/10.5670/oceanog.2005.05

R Core Team. (2013). A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing (4.0.2). R Foundation for Statistical Computing. http://www.r-project.org

Scroxton, N., White, S.M., McGee, D. & Donnelly, J.P., 2022. ITCZ Shifts Drive Decoupled Monsoon Dynamics in The Tropical Indo-Pacific During The Last Deglaciation. Science Advances, 8(38), p.eabn0062. https://doi.org/10.1126/sciadv.abn0062

Setiawan, R. Y., Mohtadi, M., Southon, J., Groeneveld, J., Steinke, S., & Hebbeln, D. (2015). The Consequences of Opening The Sunda Strait on The Hydrography of The Eastern Tropical Indian Ocean. Paleoceanography, 30(10), 1358–1372. https://doi.org/10.1002/2015PA002802

Shackleton, N. J. (1987). Oxygen Isotopes, Ice Volume and Sea Level. Quaternary Science Reviews, 6(3–4), 183–190. https://doi.org/10.1016/0277-3791(87)90003-5

Siddall, M., Rohling, E. J., Almogi-Labin, A., Hemleben, Ch., Meischner, D., Schmelzer, I., & Smeed, D. A. (2003). Sea-level Fluctuations During The Last Glacial Cycle. Nature, 423(6942), 853–858. https://doi.org/10.1038/nature01690

Sprintall, J., & Révelard, A. (2014). The Indonesian Throughflow Response To Indo-Pacific Climate Variability. Journal of Geophysical Research: Oceans, 119(2), 1161–1175. https://doi.org/10.1002/2013JC009533

Sprintall, J., Wijffels, S. E., Molcard, R., & Jaya, I. (2009). Direct Estimates of The Indonesian Throughflow Entering The Indian Ocean: 2004-2006. Journal of Geophysical Research: Oceans, 114(7), 2004–2006. https://doi.org/10.1029/2008JC005257

Stott, L., Timmermann, A., & Thunell, R. (2007). Southern Hemisphere and Deep-Sea Warming Led Deglacial Atmospheric CO 2 Rise and Tropical Warming. Science, 318(5849), 435–438. https://doi.org/10.1126/science.1143791

Suppiah, R., & Wu, X. (1998). Surges, Cross-Equatorial Flows and Their Links With The Australian Summer Monsoon Circulation And Rainfall. Australian Meteorological Magazine, 47(2), 113–130.

Tjallingii, R., Röhl, U., Kölling, M., & Bickert, T. (2007). Influence of The Water Content on X-Ray Fluorescence Corescanning Measurements in Soft Marine Sediments. Geochemistry, Geophysics, Geosystems, 8(2). https://doi.org/10.1029/2006GC001393

Wang, P. X., Wang, B., Cheng, H., Fasullo, J., Guo, Z., Kiefer, T., & Liu, Z. (2017). The Global Monsoon Across Time Scales: Mechanisms and Outstanding Issues. Earth-Science Reviews, 174(July 2016), 84–121. https://doi.org/10.1016/j.earscirev.2017.07.006

Wang, Y., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z., Wu, J., Kelly, M. J., Dykoski, C. A., & Li, X. (2005). The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science, 308(5723), 854–857. https://doi.org/10.1126/science.1106296

Xu, J., Kuhnt, W., Holbourn, A., Regenberg, M., & Andersen, N. (2010). Indo-pacific Warm Pool Variability During The Holocene and Last Glacial Maximum. Paleoceanography, 25(4). https://doi.org/10.1029/2010PA001934

Yu, J., Kuhnt, W., Lückge, A., Scheeder, G. & Westphal, H., 2023. Orbital- and Millennial-Scale Rainfall Variability in The Tropical Indo-Pacific During The Last 150,000 Years. Quaternary Science Reviews, 311, p.107834. https://doi.org/10.1016/j.quascirev.2023.107834

Downloads

Published

2025-09-01

How to Cite

Ardi, R. D. W. ., Aswan, A., Maryunani, K. A., Yulianto, E., Putra, P. S., Nugroho, S. H., & Nurhidayah, E. M. (2025). LAST GLACIAL MAXIMUM – HOLOCENE RAINFALL SHIFTS IN THE WESTERN SAVU STRAIT BASED ON GEOCHEMICAL PROXIES. JGE (Jurnal Geofisika Eksplorasi), 11(2), 135–150. https://doi.org/10.23960/jge.v11i2.493

Issue

Section

Articles

Citation Check

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.