OPTIMALISASI DATA LANDSAT 8 UNTUK PEMETAAN DAERAH RAWAN BANJIR DENGAN NDVI dan NDWI ( Studi Kasus : Kota Bengkulu )

Authors

  • Aan Erlansari Program Studi Informatika, Fakultas Teknik, Universitas Bengkulu, Indonesia
  • Boko Susilo Program Studi Informatika, Fakultas Teknik, Universitas Bengkulu, Indonesia
  • Franky Hernoza Program Studi Informatika, Fakultas Teknik, Universitas Bengkulu, Indonesia

DOI:

https://doi.org/10.23960/jge.v6i1.60

Keywords:

NDVI, NDWI, flooding, Landsat 8, remote sensing

Abstract

Indonesia is classified as a tropical region with rainfall data ranging from medium to high. This has become one of the causes of frequent flooding. Bengkulu which is one of the provinces in Indonesia, has a topography that is at an elevation of 0-16 meters above sea level with 70% flat topography and 30% small hilly. Swamp area dominates the lowlands so that it cannot optimally absorb water into the soil. This study identifies areas with potential flooding using data obtained through Landsat 8 and processes them using the NDVI and NDWI methods. NDVI detected and classified a map into five classifications; dry land with red colour, scarce vegetation with yellow pigment, sparse vegetation with soft green colour, solid vegetation with a dark green colour. Meanwhile, NDWI classified into 3 categories; medium wetness with a brown colour, dry land with beige colour and high wet area with a blue colour.

References

Anwari & Makruf, M., 2019. Pemetaan Wilayah Rawan Bahaya Banjir di Kabupaten Pamekasan Berbasis Sistem Informasi Geografis (SIG), Jurnal Ilmiah NERO, pp. 117-123.

Citra, F. W., S., E. & Sugandi, W., 2018. Tingkat Bahaya Banjir Dalam Mitigasi Bencana Banjir Di DAS Sungai Bengkulu, Jurnal Georafflesia, pp. 76-85.

Efriyani, E.N. & Farid, M., 2019. Pemetaan ancaman bencana banjir kecamatan Sungai Serut, sebagai media pembelajaran topik bahasan global warming di SMKN 3 Kota Bengkulu, Pendipa, pp. 100-105.

Esau, I. et al., 2016. Trends in normalized different vegetation index (NDVI) assosiated with development in Northen West Siberia, Atmospheric Chemistry and Physics.

Gandhi, G. M., Parthiban, S., Thummalu, N. & Christy, A., 2015. Ndvi: Vegetation Change Detection Using Remote Sensing and Gis – A Case Study of Vellore District, Procedia Computer Science, pp. 1199-1210.

Gautam, V. K., Gaurav, P. K., Murugan, P. & Annadurai, M., 2015. Assessment of Surface Water Dynamicsin Bangalore Using WRI, NDWI, MNDWI, Supervised Classification and K-T Transformation, Aquatic Procedia, pp. 739-746.

Sari, C. P., Subiyanto, S. & Awaluddin, M., 2014. Analisis Deforestasi Hutan Provinsi Jambi Menggunakan Metode Penginderaan Jauh (Studi Kasus Kabupaten Muaro Jambi), Geodesi, pp. 13-27.

Schwab, G. O., Fangmeier, D. D., Elliot , W. J. & Frevert , R. K., 1993. Soil and Water Conservation Engineering, Canada: Willey & Sons.

S., Mayub, A. & Farid, M., 2018. Potensi Rawan Banjir Kecamatan Muara Bangkahulu Sebagai Penunjang Pembelajaran Materi Pemanasan Global Di Smpn 11 Kota Bengkulu, Pendipa, pp. 93-99.

Xu, H., 2006. Modification of Normalized Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery, International Journal of Remote Sensing, pp. 3025-3033.

Downloads

Published

2020-03-18

How to Cite

Erlansari, A., Susilo, B., & Hernoza, F. (2020). OPTIMALISASI DATA LANDSAT 8 UNTUK PEMETAAN DAERAH RAWAN BANJIR DENGAN NDVI dan NDWI ( Studi Kasus : Kota Bengkulu ). JGE (Jurnal Geofisika Eksplorasi), 6(1), 57–65. https://doi.org/10.23960/jge.v6i1.60

Issue

Section

Articles

Citation Check

Similar Articles

You may also start an advanced similarity search for this article.