EARTHQUAKE VULNERABILITY MAPPING BASED ON MICROSEISMIC MEASUREMENTS IN THE CAMPUS AREA OF UNIVERSITAS SARJANAWIYATA TAMANSISWA YOGYAKARTA
DOI:
https://doi.org/10.23960/jge.v11i2.486Keywords:
Campus, Microtremor, HVSRAbstract
Building damage caused by earthquakes is more prevalent in the sedimentary areas of Yogyakarta City compared to the hilly regions of Wonosari and Kulonprogo, which have harder soil layers. The campus of Universitas Sarjanawiyata Tamansiswa (UST) is one of the campuses located in Yogyakarta City, where the regional geology is dominated by the Merapi Young Volcanic Deposits Formation. The UST campus area is vulnerable to earthquakes due to its proximity to an active seismic zone, making earthquake vulnerability mapping based on microseismic data an important necessity to support disaster mitigation efforts. The microseismic method was used in this study, while data analysis employed the Horizontal-to-Vertical Spectral Ratio (HVSR). Microseismic measurements were chosen because they have the advantage of not damaging the surface conditions of the ground, thus preserving the environment, and are easy to use in urban areas. The research method stages include survey design, field data collection, data processing and interpretation, and the creation of earthquake vulnerability maps. Data points were collected from 7 locations covering the Universitas Sarjanawiyata Tamansiswa campus area. The research results indicate that the study area has a dominant frequency value ranging from 1.10 to 2.74 Hz. Meanwhile, the amplification value ranges from 1.25 to 2.2. The sediment thickness of the study area ranges from 32 to 79 meters. The Seismic Vulnerability Index (Kg) of the study area ranges from 0.57 to 4 on a low to high scale. Based on the dominant frequency values, amplification, and seismic vulnerability index, the areas of the UST campus that are more vulnerable to earthquakes are the northern, eastern, and central parts, while the southern part is relatively safer.
References
Bard, P., Duval, A., Koehler, A., & Rao, S. (2004). Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation. Interpretation A Journal Of Bible And Theology, 169(December), 1–62. https://doi.org/DOI 10.1111/j.1365-246X.2006.03282.x
Bessason, B., & Bjarnason, J. Ö. (2016). Seismic Vulnerability of Low-Rise Residential Buildings Based on Damage Data From Three Earthquakes (Mw6.5, 6.5 and 6.3). Engineering Structures, 111(June 2000), 64–79. https://doi.org/10.1016/j.engstruct. 2015.12.008
Bodin, P., Smith, K., Horton, S., & Hwang, H. (2001). Microtremor Observations of Deep Sediment Resonance in Metropolitan Memphis, Tennessee. Engineering Geology, 62(1–3), 159–168. https://doi.org/10.1016/S0013-7952(01) 00058-8
Chatelain, J. L., Guillier, B., Cara, F., Duval, A. M., Atakan, K., Bard, P. Y., Azzara, R., Bonnefoy-Claudet, S., Borges, A., Sorensen, M. B., Cultrera, G., Di Giulio, G., Dunand, F., Fäh, D., Guéguen, P., Ripperger, J., Costa, P. T., Vassiliades, J. F., Vidal, S., & Wassner, J. (2008). Evaluation of The Influence of Experimental Conditions on H/V Results From Ambient Noise Recordings. Bulletin of Earthquake Engineering, 6(1), 33–74. https://doi.org/10.1007/s10518-007-9040-7
Febriani, Y., Daruwati, I., & Hatika, R. G. (2013). Analisis Nilai Peak Ground Acceleration dan Indeks Kerentanan Seismik Berdasarkan Data Mikroseismik Pada Daerah Rawan Gempa Bumi di Kota Bengkulu. Jurnal Ilmiah Edu Research, 2(2), 85–90.
Handayani, S., Niyartama, T. F., & Wibowo, N. B. (2019). Studi Site Effect (Tapak Lokal) Berdasarkan Pengukuran Mikrotremor di Kecamatan Ngluwar Kabupaten Magelang Jawa Tengah. Prosiding Seminar Nasional Fisika Festival, Yogyakarta, November, 92–101.
Heidari, R., Ghayamghamian, M. ., & Shomali, Z. . (2014). Site characterization of the source microtremors using the H/V method. Iranian Journal of Geophysics, 8(3), 74–85.
Hesti, H., Suharno, S., Mulyasari, R., & Hidayatika, A. (2021). Analisis Karakteristik Lapisan Sedimen Berdasarkan Data Mikrotremor di Area Rumah Sakit Pendidikan Unila. JGE (Jurnal Geofisika Eksplorasi), 7(2), 150–159. https://doi.org/10.23960/jge.v7i2.123
Jannah, D. M., Khoirunnisa, S., Rosyida, H., & Christalianingsih, F. E. (2024). Analisis Indeks Kerentanan Seismik Berdasarkan Nilai V S30 Pada Zona Terdampak Gempa Bumi (Studi Kasus: Gempa Cianjur 21 November 2022) Analysis of Seismic Vulnerability Index Based on Vs30 Values in Earthquake-Affected Zones. 9(2), 107–116. https://doi.org/10.33579/krvtk.v9i2.4972
Juarzan, L. I., Jafar, W. A. W., Hamimu, L. H., & Indrawati, I. (2023). Analisis Ketebalan Lapisan Sedimen Menggunakan Metode Horizontal to Vertical Spectral Ratio (HVSR) di Wilayah Pesisir Kecamatan Moramo Kabupaten Konawe Selatan. Jurnal Rekayasa Geofisika Indonesia, 5(03), 137–145. https://doi.org/10.56099/jrgi.v5i03.27
Kornhuber, K., Petoukhov, V., Petri, S., Rahmstorf, S., & Coumou, D. (2017). Evidence for Wave Resonance As A Key Mechanism For Generating High-Amplitude Quasi-Stationary Waves In Boreal Summer. Climate Dynamics, 49(5–6), 1961–1979. https://doi.org/10.1007/s00382-016-3399-6
Li, W., Yue, D., Wang, W., Wang, W., Wu, S., Li, J., & Chen, D. (2019). Fusing Multiple Frequency-Decomposed Seismic Attributes With Machine Learning for Thickness Prediction and Sedimentary Facies Interpretation in Fluvial Reservoirs. Journal of Petroleum Science and Engineering, 177(March), 1087–1102. https://doi.org/10.1016/j.petrol.2019.03.017
Listyani R.A.T. (2020). Identifikasi Petrofisik Batuan sebagai Pendukung Karakteristik Hidrolik Akuifer pada Sub DAS Code, Yogyakarta. Jurnal Geosapta, 6(2), 103. https://doi.org/10.20527/jg.v6i2.7473
Marjuki, B. & Yogafanny, E. (2008). Profil Kebencanaan Provinsi Daerah Istimewa Yogyakarta.
Moechtar, R.A.T. (2021). Dinamika Proses Pengendapan Sedimen Holosen di Hilir Sungai Bengawan Solo serta Wilayah Pasang Surut di Gresik dan Sekitarnya, Jawa Timur. Jurnal Geologi Dan Sumberdaya Mineral, 22(1), 9. https://doi.org/10.33332/jgsm.geologi.v22i1.553
Muzli, M., Mahesworo, R. P., Madijono, R., Siswoyo, S., Pramono, S., Dewi, K. R., Budiarta, B., Sativa, O., Sulistyo, B., Swastikarani, R., Oktavia, N., Moehajirin, M., Efendi, N., Wijaya, T. A., Subadyo, B., Mujianto, M., Suwarto, S., & Pramono, S. (2016). Pengukuran Vs30 Menggunakan Metode Masw Untuk Wilayah Yogyakarta. Jurnal Meteorologi Dan Geofisika, 17(1), 25–32. https://doi.org/10.31172/jmg.v17i1.374
Nakamura, Y. (1989). Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on The Ground Surface. In Quarterly Report of RTRI (Railway Technical Research Institute) (Japan) (Vol. 30, Issue 1, pp. 25–33).
Nakamura, Y. (2000). Clear Identification of Fundamental Idea of Nakamura’s Technique and Its Applications. Proceedings of the 12th World Conference on Tokyo, Paper no. 2656. http://www.sdr.co.jp/papers/n_tech_and_application.pdf
Perdhana, R. & Nurcahya, B. E. (2019). Seismic a Damage Distribution of 2006 Yogyakarta Earthquake. E3S Web of Conferences, 76, 4–7. https://doi.org/10.1051/e3sconf/20197603008
Prabowo, U. N., Budhi, W., & Amalia, A. F. (2020). Analisis Mikrotremor Untuk Mengevaluasi Kerentanan Gempabumi Ruangan Prodi Pend Fisika Ust. Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, 6(1), 10–16. https://doi.org/10.30738/jst.v6i1.6569
Purnama, A. Y., Nurcahya, B. E., Nurhanafi, K., & Perdhana, R. (2021a). Mikrozonasi Berdasarkan Data Mikrotremor dan Kecepatan Gelombang Geser di Kotamadya Yogyakarta. Positron, 11(2), 86. https://doi.org/10.26418/positron.v11i2.46860
Purnama, A. Y., Nurcahya, B. E., Nurhanafi, K., & Perdhana, R. (2021b). Mikrozonasi Berdasarkan Data Mikrotremor dan Kecepatan Gelombang Geser di Kotamadya Yogyakarta. Positron, 11(2), 86. https://doi.org/10.26418/positron.v11i2.46860
Putra, R.R. & Saputra, D. (2022). Assessment Tingkat Kerentanan Bangunan Bertingkat di Kampus Universitas Negeri Padang Menggunakan Gelombang Rayleigh. Jurnal Serambi Engineering, 7(1), 2638–2648. https://doi.org/10.32672/jse.v7i1.3826
Putri, A., Purwanto, M. S., & Widodo, A. (2017). Identifikasi Percepatan Tanah Maksimum (PGA) dan Kerentanan Tanah Menggunakan Metode Mikrotremor Jalur Sesar Kendeng. Jurnal Geosaintek, 3(2), 107. https://doi.org/10.12962/j25023659.v3i2.2966
Rahardjo, W., Sukandarrumidi, H. M., & Rosidi, R. (1995). Peta Lembar Yogyakarta, Jawa Skala 1:100.000.
Riswandi, H., Ikhsan, I., Maharani, Y. N., Wijayanto, W., Sunardi, B., Ekarsti, A. K., Rizkianto, Y., & Syaifudin, M. (2023). Pemetaan Mikrozonasi Bahaya Gempabumi Sebagai Upaya Pengurangan Risiko Bencana Di Yogyakarta. Jurnal Mineral, Energi, Dan Lingkungan, 7(1), 23. https://doi.org/10.31315/jmel.v7i1.7743
Satria, A., Resta, I. L., & MZ, N. (2020). Analisis Ketebalan Lapisan Sedimen dan Indeks Kerentanan Seismik Kota Jambi Bagian Timur. JGE (Jurnal Geofisika Eksplorasi), 6(1), 18–30. https://doi.org/10.23960/jge.v6i1.58
SESAME. (2004). Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations: Measurements, Processing and Interpretation (S. E. R. P. WP12 (ed.); pp. 1–62). SESAME European Research Project WP12.
Su, G., Shi, Y., Feng, X., Jiang, J., Zhang, J., & Jiang, Q. (2018). True-Triaxial Experimental Study of the Evolutionary Features of the Acoustic Emissions and Sounds of Rockburst Processes. Rock Mechanics and Rock Engineering, 51(2), 375–389. https://doi.org/ 10.1007/s00603-017-1344-6
Wibowo, N. B. & Huda, I. (2020). Analisis Amplifikasi, Indeks Kerentanan Seismik dan Klasifikasi Tanah Berdasarkan Distribusi Vs30 D.I.Yogyakarta Analysis of Amplification, Seismic Vulnerability Index and Soil Clasification Based On Vs30 In Yogyakarta. Buletin Meteorologi, Klimatologi, dan Geofisika, 1(2), 21–31. http://usgs.maps.arcgis.com/apps/we
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 JGE (Jurnal Geofisika Eksplorasi)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-NonComercial (CC BY-NC).