PREDIKSI KECEPATAN GELOMBANG GESER (VS) MENGGUNAKAN MACHINE LEARNING DI SUMUR X
DOI:
https://doi.org/10.23960/jge.v8i1.180Keywords:
Machine learning, R2 value score, Shear wave velocity, Well X and YAbstract
References
Agustina, S. D., Mustakim, Okfalisa, Bella, C., & Ramadhan, M. A. (2018). Support Vector Regression Algorithm Modeling to Predict the Availability of Foodstuff in Indonesia to Face the Demographic Bonus. Journal of Physics: Conference Series, 1028(1). https://doi.org/10.1088/1742-6596/1028/1/012240
Akhundi, H., Ghafoori, M., & Lashkaripour, G, R. (2014). Prediction of Shear Wave Velocity Using Artificial Neural Network Technique, Multiple Regression and Petrophysical Data: A Case Study in Asmari Reservoir (SW Iran). SciRes. https://doi.org/http://dx.doi.org/10.4236/ojg.2014.47023.
Anemangely, M., Ramezanzadeh, A., Amiri, H., & Hoseinpour, S.-A. (2019). Machine learning technique for the prediction of shear wave velocity using petrophysical logs. Journal of Petroleum Science and Engineering, 174, 306–327. https://doi.org/https://doi.org/10.1016/j.petrol.2018.11.032
Bre, F., Gimenez, J. M., & Fachinotti, V. D. (2018). Prediction of Wind Pressure Coefficients on Building Surfaces using Artificial Neural Networks. Energy & Buildings, 158, 1429–1441. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.11.045
Dumke, I., & Berndt, C. (2019). Prediction of seismic p-wave velocity using machine learning. Solid Earth, 10(6), 1989–2000. https://doi.org/10.5194/se-10-1989-2019
Hampson, D., Schuelke, J., & Quirein, J. (2021). Use of Multi-Attribute Transforms to Predict Log Properties from Seismic Data. Geophysics, 66, 220–236.
Huang, S., Tian, L., Zhang, J., Chai, X., Wang, H., & Zhang, H. (2021). Support Vector Regression Based on the Particle Swarm Optimization Algorithm for Tight Oil Recovery Prediction. ACS Omega, 6(47), 32142–32150. https://doi.org/10.1021/acsomega.1c04923
Isebor, O. J., & Grujic, O. (2012). Use of Machine Learning in Petroleum Production Optimization Under Geological Uncertainty. Stanford University.
Ju, F. Y., & Hong, W. C. (2013). Application of Seasonal SVR with Chaotic Gravitational Search Algorithm in Electricity Forecasting. Applied Mathematical, 37, p.9643 – 51.
Kleynhans, T., Montanaro, M., Gerace, A., & Kanan, C. (2017). Predicting Top-of-Atmosphere Thermal Radiance Using MERRA-2 Atmospheric Data with Deep Learning. Remote Sensing, 9(11), 1133. https://doi.org/https://doi.org/10.3390/rs9111133
Maulana, N., Setiawan, B., & Dewi, C. (2019). Implementasi Metode Support Vector Regression (SVR) Dalam Peramalan Penjualan Roti (Studi Kasus: Harum Bakery). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(3), 2986–2995.
Mitchell, T. M. (1997). Machine Learning. Burr, Ridge, IL: McGraw Hill, 45(37), 870–877.
Shi, L., & Zhang, J. (2021). Prediction of shear wave velocity using machine learning technique, multiple regression and well logs. In ARMA/DGS/SEG 2nd International Geomechanics Symposium (p. ARMA-IGS-21-095).
Shmueli, G., Bruce, P. C., & Patel, N. R. (2016). Data Mining for Business Analytics.
Sholkopf, B., & Smola, A. (2002). Learning with Kernel. MIT Press.
Waldeland, A. U., Jensen, A. C., Gelius, L., & Solberg, A. H. S. (2018). Convolutional Neural Networks for Automated Seismic Interpretation. The Leading Edge, 37, 529–537.
Wang, J., Cao, J., Zhao, S., & Qi, Q. (2022). S-wave velocity inversion and prediction using a deep hybrid neural network. Science China Earth Sciences. https://doi.org/10.1007/s11430-021-9870-8
Wang, L. J., Guo, M., K., S., Lin, J., & Zhang, J. (2016). A Comparative Study of Landslide Susceptibility Maps Using Logistic Regression, Frequency Ratio, Decision Tree, Weights of Evidence and Artificial Neural Network. Geosciences Journal, 20(1), 117–136.
Widiaputra. (2016). Artificial Neural Network. Dosen Perbanas. https://dosen.perbanas.id/artificial-neural-network/.
Downloads
Additional Files
Published
How to Cite
Issue
Section
Citation Check
License
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g. display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-NonComercial (CC BY-NC).